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Numerical Methods 
 

Numerical Solution to partial differential Equation 

 

Introduction:  

 
 Atmospheric model simulation physical processes described by ordinary and 

partial differential equations. Gas and aqueous chemistry and gas to partial 

conversion processes are simulated with ordinary differential equation. In this 

chapter, ordinary and partial differential equation are defined and numerical methods 

of solving partial differential equations are discussed. Methods of solving partial 

differential equations include finite- difference and series expansion methods. In both 

cases, partial derivatives are approximated with analogs, and analogs are solved 

numerically. Below, finite-difference analoges and their numerical solutions are 

given for the advection- diffusion equation, which is a unidirectonal form of the 

species continuity equation. Solutions that assume constant and variable grid spacing 

and eddy diffusion cofficients are shown. A special case of finite – difference method 

is the semi- Lagrangian method. Two series exansion methods, the finite- element 

and pseudospectral methods are discussed. 

1. Ordinary and partial differntial equation  

 An ordinary differential equation (ODE) is an equation with one independent 

variable, such as time, and a partial differential equation (PDE) is an equation with 

more than one independent variable, such as time and space. ODEs and PDEs are 

classified by their order and degree. The order is the highest derivative rank of the 

equation, and the degree is the highest polynomial exponent of the highest derivative. 

A homogeneous differential equation that does not contain a term involving the 

independent variable. A liner differential equation is one in which the dependent 

variable and its derivatives do not appear in second-degree or higher terms and in 

which the dependent variable is not multiplied by other derivatives of itself. 
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Table (1) shows ordinary and partial differential equation of varying orders and 

degrees. In the table (a), (b), (d), (e), and (f) are homogeneous, and the reaming 

equations are inhomogeneous. Equation b, and e are liner, and the rest are nonlinear. 

Chemical equation are first-order, first-degree, homogeneous ODEs, such as (a) and 

(b). these equations are either liner or nonlinear. The species continuity equation and 

the thermodynamic energy equation are first-order, first degree, homogeneous, 

nonlinear PDE, such as (f). 

Table 1: Examples of the Order and degree of ordinary and Partial Differential Eq.  

 

  

 Boundary conditions for ODEs and PDEs must be specified. When conditions 

are known at one end of domain but not the other, an initial –value problem arises. If 

the concentrations (N) are known at time t=0, if time is the independent variable, and 

if concentration is the dependent variable, the set of ODEs is an initial value problem. 

When conditions are known at both ends of a domain, a boundary- value problem 

arises. If time and west -  east  direction (x) are independent variables if the 

concentration is the dependent variables and if the concentrations are known 

everywhere at t=0 and at both ends of spatial domain at all times, the set of PDEs is 

an initial value problem with respect to time and boundary value problem with 

respect to space.  

2. Operator - Splitting  

 Each major process in an atmospheric model is generally solved separately 

from each other process. Suppose a model take account of dynamics, transport, and 

gas chemistry. Each of these processes may be solved sequentially during a common 
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time interval, with a unique numerical scheme that takes a unique number of time 

steps. A time step is as increment in time for a given process. A time interval is the 

period during which several time steps of process are solved without interference by 

other processes. Suppose the time step for dynamic is 6 s, the transport time step is 

300 s, the chemistry time step is variable, and the time interval common to all 

processes is 300 s. During the time interval, 50 dynamics time steps are taken, 

followed by 1 transport time step, followed by a variable number of chemistry time 

steps. After the dynamic steps, average predicted wind speed is used as inputs into 

the transport calculations. During the transport step, gases are moved around the grid. 

Final concentrations from the transport step are used as initial value for the chemistry 

steps. Final values from the chemistry steps are used as initial values for dynamics 

steps in the next time interval. Figure 6.1 illustrates this example. 

 The isolation of individual processes during a time interval is called time or 

operators-splitting. Operator-splitting is used because computers today cannot solve    

 

 

All model ODEs and PDEs simultaneously in three dimensions. Yanenko (1971) 

discusses the theoretical basis behind operator-splitting with respect to certain 

mathematical equations.  

3. Advection – Diffusion Equations 

First-order, first-degree, homogenous, linear or nonlinear partial differential 

equations solved in atmospheric models include the species continuity equation, the 
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thermodynamic energy equation, and the directional momentum equation. The 

method of solving these equations together is given. In this chapter methods of 

solving advection-diffusion equations, which are operator-split forms of the species 

continuity equation, are discussed advection-diffusion equations are derived by 

considering that the four-dimensional (t,x,y,z) species continuity equation can be 

divided into three two-dimensional partial differential equation ([t,x],[t,y], and[t,z]) 

and single one –dimensional (t) ordinary differential equation. The sequential 

solution to the four operator-split equations approximates the solution to the original 

four-dimensional equation. This method of operator- splitting a mathematical 

equation is called the locally one-dimensional (LOD) procedure or the method of 

fractional steps, has been used widely in atmospheric models. 

  From the four-dimensional species continuity equation the west-east, south-

north, and vertical unidirectional advection-diffusion equations can be written in 

number concentration units as:  

 

The solution order of these equations may be reversed each time interval to improve 

accuracy. Thus, if the equations are solved in the order (6.1), (6.2), (6.3) during one 

time interval, they may be solved in the order (6.3), (6.2), (6.1) during the next time 

interval. Fractional – step schemes associated with order reversal are called 

alternating –direction schemes.  

 The remaining terms in species continuity equation are external source/sink 

terms. These terms are operator- split from the advection-diffusion terms as a single 

ordinary differential equation,  
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Or may be split further into several ODEs (6.4) can be solved before or after (6.1)- 

(6-3) are solved.  

 In moist- air mass- ratio units, the operator- split west-east advection diffusion 

equation can be written from (3 ) as:  
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Analogous equations can be written for the south – north and vertical directions and 

for external source. In the following sections, finite-difference and series expansion 

methods of approximating derivatives and solving advection- diffusion equations 

discussed.  

4. Finite-Difference Approximation  

 Approximate solutions to partial differential equations, such as advection- 

diffusion equation can be found with finite –difference or series expansion methods. 

The purpose of using an approximation is to reduce the solution space for each 

continuous differential function from as infinite to a finite number of spatial or 

temporal nodes in order to speed up computation of the differential equation. 

 A finite – difference approximation involves the replacement of each 

continuous differential operator (d) with a discrete difference analog (∆). This analog 

is an approximation written in terms of finite number of values of the variable being 

operated on at each temporal or spatial node. If the west- east scalar velocity is a 

continuous function in space at given time, vales of the velocity can be mapped from 

the function to a discretized west –east grid, as shown in Fig. 6.2. The grid consists of 

several grid cells (also called grid boxes, grid points, or nodes) placed any distance 

part.  

  Finite – difference Approximations of a variable are often made with respect 

to time or space. Table 6.1 (e) and (f) are partial differential equations commonly 

simulated in atmospheric models. In (e) finite –difference analogs are required for 
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( tN  / ) and   xuN  / . In (f), finite-difference analogs are required for ( xutu  /,/ )   

and yu  /  .  

                 

4.1 Consistency, Convergence, and Stability  

 The ability of numerical solution to replicate the exact solution to partial 

differential equation depends on several factors. A finite – difference analog in space 

or time must converge to its differential expression when the analog is reduced 

towards zero. If xN  /   is a finite –difference analog  xN  /  , the condition  
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must be satisfied for the approximation to be useful. 

 The finite – difference analog xN  /  in Equation (6.6) is obtained from a 

Taylor series expansion. In the expansion, high- order term are neglected to reduce 

the computational burden of the approximation. The difference between the full 

Taylor series expansion and truncated approximation is the truncation error> A finite- 

approximation approaches zero a ∆x or (∆t) approaches zero. Consistency occurs 

when :  
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Where T.E. is the truncation error of the approximation xN  / . 
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 If a finite- difference approximation is consistent, the rate at which its 

truncation error approaches zero depends on the order of approximation. The order of 

approximation is the lowest- order term in the Taylor series expansion neglected in 

the approximation. The higher the order of approximation, the faster the truncation 

error converges towards zero upon an increase in spatial (or temporal) resolution 

thus, with the same ∆x, a high-order approximation is more accurate than a low-order 

approximation. For the same truncation error, a low- order approximation requires a 

smaller ∆x than does a high- order approximation. In sum, a high – order with a large 

∆x. Because a high – order approximation includes more terms, it requires more 

computation than does a low – order approximation with the same ∆x.  

 Obtaining high order with respect one variable, such as space, is useful only if 

the order of the other variable, such as time, is also high. Otherwise, low accuracy in 

the time derivative swamps the high accuracy in the space derivative. An optimal 

finite – difference solution has similar order in space and time.  

 While individual finite – difference analogs must converge towards exact 

differentials, the overall numerical solution to a PDE must converge to an exact 

solution when spatial and temporal differences decrease towards zero. If 
txe

N
,,
 is an 

exact solution and
txf

N
,,
 is a finite – difference approximation of a PDE, overall 

convergence occurs when  
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 If a numerical solution is non-convergent, it is not useful. 

 For a numerical method to be successful, it must be stable. Stability occurs if 

the absolute-value difference between the numerical and exact solutions does not 

grow over time. Thus,  

                                  CNN
txfxte

t




,,,
lim  ---------------------- ------- (6.9)  

Where C is a constant. Stability often depends on the time step size used. If a 

numerical solution is stable for any time step smaller than a specified value, the 

solution is conditionally stable. If a solution is table, regardless of the time step, it is 
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unconditionally stable. If a solution is unstable, regardless of the time step, it is 

unconditionally unstable. 

 Other problem arising from finite – difference and other solutions to partial 

difference are numerical diffusion (artificial spreading of peak values across several 

grid cells) and numerical dispersion (waves appearing ahead of and behind peak 

value). These problems can usually be mitigated by increasing the resolution of the 

spatial grid (e.g. decreasing ∆x), decreasing the time step, or increasing the order of 

approximation of the finite – difference analog.     

4.2 Low- Order Approximations of Derivatives   

A finite – difference approximation, such as xu  / , involves the replacement of 

individual expression, such as xu  / , with finite – difference analog, such 

as xoru  , respectively. Suppose xu  /  is discretized over a west-east grid, as 

shown in Fig. 6.2, where all cells are rectangular. Each cell is denoted by an index 

number I, and distance from the western edge of the entire grid to the western edge of 

cell I is 
i

X .  

 On the grid layout just defined, the differential scalar velocity u  at point 
i

X  

can be estimated as  

11 


iii
uuu  , 

iii
uuu 

1
. Or 

1


iii
uuu , with are the central, forward, 

and backward-difference approximations, respectively. 
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The corresponding discretizations of x  are
11 
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xxx  ,
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1

. and 

1


iii
xxx , respectively. In the central – difference case, the slop of the tangent at 

point xi in Fig. 6.2 is approximately. 
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Similar equation can be written for the forward and backward –difference cases. 

 The approximations just discussed can be derived from a Taylor series 

expansion. If gas concentration is a continuous function of west –east distance, as 

shown in Fig. 6.3 the values, of  (N) at points +∆x and -∆x, respectively, are 

determined from Taylor's theorem as   

     

If grid spacing is uniform (∆x is constant), the sum of equation (6.11) and (6.12) is:  
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Rearranging (6.13) gives:  
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Where 
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Includes all terms of order 2
x  and higher. If )(

2
xO  is small, equation (6.14) 

simplifies to :-  
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Where  )(
2

xO  is now the truncation error. Equation (6.16) is a second- order central 

difference approximation of 22
/ xN

x
 . The equation is second – order because the 

lowest –order exponent in the truncation error is two. It is a central –difference 

approximation because it relies on equally weight of N on each side of node x.  

 

Subtracting equation (6.12) from equation (6.11) gives:   
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Rearranging this equation results in  
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Includes all terms of order 2
x and higher. If )(

2
xO   is small, equation (6.18) 

simplifies to:  

                       

 
x

NN

x

NN

x

N
iixxxxx
















22

11 ------------------------(6.20) 

  

Where (i+1) and (i-1) are surrogates for xx   and xx  , respectively. This equation 

is a second-order central- difference approximation of the first order derivative of 
x

N  

Equation (6.20) gives the slop of the tangent (represented by chord AC) of 
x

N  at 

point B in Fig. 6.3.  
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 Another approximation of the first derivative of  
x

N  is obtained the first two 

terms of equation (6.11). Rearranging these terms gives: 
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 The truncated portion of approximation includes terms first –order and higher 

)]([ xO   ; thus, equation(6.21) is a first-order forward-difference approximation of the 

first derivative of 
x

N . The slop of this derivative is represented by chord BC in Fig. 

6.3. Rearranging the first two terms of equation (6.12) gives: 

    

 Which is the first – order backward –difference approximation of the first 

derivative of
x

N , represented by chord AB in fig. 6.3.  

 If time, not space, is the independent variable, the second order central, first 

order forward and first backward difference approximations of 
t

N
t


 are : 

     

Respectively, where b =∆t is the time-step size, t is the current time, t+b is one time 

step forward, and t-b is one time step backward. These equations are derived in the 

sane manner as equation (6.20), (6.21), and (6.22), respectively. 

 

4.3 Arbitrary- Order Approximations of Derivatives   

 Finite difference approximations of arbitrary order can be obtained 

systematically (e.g., Celia and Gray 1992). The approximation of m
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nodes in the x-direction. If the independent variable is time, the derivative can be 

expanded along q time steps. The minimum number of nodes allowed in the 

expansion is m+1. In general, the maximum order of approximation of a finite 

difference solution is q-m, although it may be smaller or larger for individual cause. 

For instance, when m is even and the grid spacing is constant, the order of 

approximation can be increased to (q-m+1).   

 Figure 6.4 shows the arbitrary grid spacing for the derivation to come. The 

point at which the derivative is taken does not need to correspond to a node point, 

although in the figure the derivative is assumed to be taken t node point x3. The 

distance between two nodes is 
iii

xxx 
1

 , where i varies from 1 to q-1.   

 The finite difference solution to m
th 

derivative across q nodes is approximately. 

 

            

Figure 6.4: Grid spacing of an arbitrary –spaced grid where q=5. The derivative is 

taken at point x3, marked. 

 Where the 
i

 's are constants to be determined. A Taylor series expansion of  N 

at node i across the point at which the derivative is taken (*) is:  

 

Combining (6.24) with (6.24) and gathering terms gives: 
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This equation can be rewritten:  
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Where  

 

Equation (6.28) represents a matrix of q equations and unknowns. Multiplying (6.28) 

by n! gives:  
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The highest – order derivative is found when Bn=1 for n=m and Bn=o 

For all other n. 

 The first order backward difference approximation of   1/  mxN is found 

from (6.29) by discretizing xN  /  across two equally spaced grid cells (q=2), setting 

B1= -1, and B1= 0 for all other n. the resulting matrix is :  
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Where the subscript ( i-1) indicates one node to the left of i. the matrix has solution 
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From equation (6.24) gives the approximation shown in equation (6.22) and table 

(6.2) a. 
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Second order central and backward difference approximations of  1/  mxN  are 

found by discretizing  1/  mxN  across three nodes (q=3). The resulting matrices 

are:  

   

  











































































































































0

1

0

0)(2

02

111

0

1

0

0

0

111

1

2

22

1

1

22

i

i

i

i

i

i

xx

xx

xx

xx













………………. (6.32)  

 Respectively substituting solutions to these matrices into (6.24) gives the 

approximation shown in table 6.2- c and d, respectively. The second order forward 

difference approximation of xN  /  is found by discretizing around the first column in 
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(6.32). The result is shown table 6.2 –e. Foreword and backward difference 

discretizations are negatively symmetric to each other.  

 Third order backward and forward difference approximations of xN  /  are 

found in similar manner. The results are shown in table 6.2- f and g. respectively 

where the discretizations are around four cells.  

 


