Foundation of Mathematics II Chapter Two System of Numbers

Mustansiriyah University-College of Science-Department of Mathematics

Chapter Two

System of Numbers

1. Natural Numbers

Let 0 = Set with no point, that is; $0 = \emptyset$, 1 = Set with one point, that is; $1 = \{0\}$, 2 = Set with two points, that is; $2 = \{0,1\}$, and so on. Therefore,

$$1 = \{0\} = \{\emptyset\},\$$

$$2 = \{0,1\} = \{\emptyset, \{\emptyset\}\},\$$

$$3 = \{0,1,2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\},\$$

$$4 = \{0,1,2,3\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}\},\$$

:

$$n = \{0,1,2,3,...,n-1\}.$$

Definition 2.1.1. Let A be a set. A **successor** to A is $A^+ = A \cup \{A\}$ and denoted by A^+ .

According to above definition we can get the numbers 0,1,2,3, ... as follows:

$$0 = \emptyset$$
,

$$1 = \{0\} = \emptyset \cup \{\emptyset\} = \emptyset^+ = 0^+,$$

$$2 = \{0,1\} = \{0\} \cup \{1\} = 1 \cup \{1\} = 1^+,$$

$$3 = \{0,1,2\} = \{0,1\} \cup \{2\} = 2 \cup \{2\} = 2^+,$$

Definition 2.1.2. A set *A* is said to be **successor set** if it satisfies the following conditions:

- (i) $\emptyset \in A$,
- (ii) if $a \in A$, then $a^+ \in A$.

Remark 2.1.3.

- (i) Any successor set should contains the numbers 0,1,2,...n.
- (ii) Collection of all successor sets is not empty.
- (iii) Intersection of any non empty collection of successor sets is also successor set.

Definition 2.1.4. Intersection of all successor sets is called **the set of natural numbers** and denoted by \mathbb{N} , and each element of \mathbb{N} is called **natural element**.

Peano's Postulate 2.1.5.

- (\mathbf{P}_1) $0 \in \mathbb{N}$.
- (**P**₂) If $a \in \mathbb{N}$, then $a^+ \in \mathbb{N}$.
- (\mathbf{P}_3) $0 \neq a^+ \in \mathbb{N}$ for every natural number a.
- $(\mathbf{P_4})$ If $a^+ = b^+$, then a = b for any natural numbers a, b.
- (P₅) If X is a successor subset of \mathbb{N} , then $X = \mathbb{N}$.

Remark 2.1.6.

- (i) P_1 says that 0 should be a natural number.
- (ii) P_2 states that the relation $+: \mathbb{N} \to \mathbb{N}$, defined by $+(n) = n^+$ is mapping.
- (iii) P_3 as saying that 0 is the first natural number, or that '-1' is not an element of \mathbb{N} .
- (iv) P_4 states that the map $+: \mathbb{N} \to \mathbb{N}$ is injective.
- $(v)\ P_5$ is called the **Principle of Induction**.

2.1.7. Addition + on \mathbb{N}

We will now define the operation of addition + using only the information provided in the Peano's Postulates.

Let $a, b \in \mathbb{N}$. We define $+: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ as follows:

$$+(a,b) = a + b =$$

$$\begin{cases} a + 0 = a & \text{if } b = 0 \\ a + c^{+} = (a + c)^{+} & \text{if } b \neq 0 \end{cases}$$

where $\boldsymbol{b} = \boldsymbol{c}^+$.

Therefore, if we want to compute 1 + 1, we note that $1 = 0^+$ and get $1 + 1 = 1 + 0^+ = (1 + 0)^+ = 1^+ = 2$.

We can proceed further to compute 1 + 2.

To do so, we note that $2 = 1^+$ and therefore that

$$1 + 2 = 1 + 1^{+} = (1 + 1)^{+} = 2^{+} = 3.$$

2.1.8. Multiplication \cdot on $\mathbb N$

We will now define the operation of multiplication \cdot using only the information provided in the Peano's Postulates.

Let $a, b \in \mathbb{N}$. We define $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ as follows:

$$(a,b) = a \cdot b = \begin{cases} a \cdot 0 = 0 & \text{if } b = 0 \\ a \cdot c^+ = a + a \cdot c & \text{if } b \neq 0 \end{cases}$$

where $\boldsymbol{b} = \boldsymbol{c}^+$.

Thus, we can easily show that $a \cdot 1 = a$ by noting that $1 = 0^+$ and therefore

$$a \cdot 1 = a \cdot 0^{+} = a + (a \cdot 0) = a + 0 = a.$$

We can use this to multiply $3 \cdot 2$. Of course, we know that $2 = 1^+$ and therefore

$$3 \cdot 2 = 3 \cdot 1^{+} = 3 + (3 \cdot 1) = 3 + 3 = 6.$$

Remark 2.1.9. From 2.1.7 and 2.1.8 we can deduce that for all $n \in \mathbb{N}$, if $n \neq 0$, then there exist an element $m \in \mathbb{N}$ such that $n = m^+$.

Theorem 2.1.10.

- (i) $n^+ = n + 1, \forall n \in \mathbb{N}$.
- (ii) $n + m = m + n, \forall n, m \in \mathbb{N}$. (Commutative property of +)
- (iii) $(n+m)+c=n+(m+c), \forall n,m,c \in \mathbb{N}$. (Associative property of +)
- (iv) $n \cdot m = m \cdot n, \forall n, m \in \mathbb{N}$. (Commutative property of ·)
- (v) $(n \cdot m) \cdot c = n \cdot (m \cdot c), \forall n, m, c \in \mathbb{N}$. (Associative property of ·)
- (vi) $(n+m) \cdot c = n \cdot c + m \cdot c, \forall n, m, c \in \mathbb{N}$. (Distributive property of \cdot on +) $c \cdot (n+m) = c \cdot n + c \cdot m$.
- (vii) The addition operation + defined on \mathbb{N} is unique.
- (viii) The addition operation \cdot defined on $\mathbb N$ is unique.
- (ix) (Cancellation Law for +). m + c = n + c, for some $c \in \mathbb{N} \iff m = n$.
- (x) (Cancellation Law for ·). $m \cdot c = n \cdot c$, for some $c \neq 0 \in \mathbb{N} \iff m = n$.
- (xi) 0 is the unique element such that 0 + m = m + 0 = m, $\forall m \in \mathbb{N}$.
- (xii) 1 is the unique element such that $1 \cdot m = m \cdot 1 = m, \forall m \in \mathbb{N}$.
- (xiii)If $m \cdot n = 0$, then either m = 0 or n = 0, $\forall m, n \in \mathbb{N}$. (N has no zero divisor) **Proof:**

(i)
$$n^+ = (n+0)^+$$
 (Since $n = n+0$)
= $n+0^+$ (Def. of +)
= $n+1$ (Since $0^+ = 1$)

(ii) Suppose that $L_m = \{n \in \mathbb{N} | m+n=n+m\}, m \in \mathbb{N}$. Then prove that L_m is successor subset of \mathbb{N} .

(iii) Let
$$L_{mn} = \{c \in \mathbb{N} | (m+n) + c = m + (n+c)\}, m, n \in \mathbb{N}.$$

(1)
$$(m+n) + 0 = m + n = m + (n+0)$$
; that is, $0 \in L_{mn}$. Therefore, $L_{mn} \neq \emptyset$.

(2) Let
$$c \in L_{mn}$$
; that is, $(m+n)+c=m+(n+c)$. To prove $c^+ \in L_{mn}$.

$$(m+n) + c^{+} = ((m+n) + c)^{+}$$

= $(m+(n+c))^{+}$ (since $c \in L_{mn}$)
= $m + (n+c)^{+}$ (Def. of +)
= $m + (n+c^{+})$ (Def. of +)

Thus, $c^+ \in L_{mn}$. Therefore, L_{mn} is a successor subset of \mathbb{N} . So, we get by \mathbf{P}_5 $L_{mn} = \mathbb{N}$.

- (iv) Suppose that $L_m = \{n \in \mathbb{N} | m \cdot n = n \cdot m\}$, $m \in \mathbb{N}$. Then prove that L_m is successor subset of \mathbb{N} .
- (v) Suppose that $L_{mn} = \{c \in \mathbb{N} | (m+n) \cdot c = m \cdot c + n \cdot c\}, m, n \in \mathbb{N}$. Then prove that L_{mn} is successor subset of \mathbb{N} .
- (vi) Suppose that $L_{mn} = \{c \in \mathbb{N} | c \cdot (m+n) = c \cdot m + c \cdot n\}, m, n \in \mathbb{N}$. Then prove that L_{mn} is successor subset of \mathbb{N} .
- (vii) Let ⊕ be another operation on such that

$$\bigoplus(a,b) = \begin{cases} a \oplus 0 = a & \text{if } b = 0 \\ a \oplus c^+ = (a \oplus c)^+ & \text{if } b \neq 0 \end{cases}$$

where $\boldsymbol{b} = \boldsymbol{c}^{+}$.

Let $L = \{m \in \mathbb{N} | n + m = n \oplus m, \forall n \in \mathbb{N} \}.$

(1) To prove $0 \in L$.

 $n + 0 = n = n \oplus 0$. Thus, $0 \in L$.

(2) To prove that $k^+ \in L$ for every $k \in L$. Suppose $k \in L$.

$$n + k^+ = (n + k)^+$$
 Def. of +
= $(n \oplus k)^+$ (Since $k \in L$)
= $n \oplus k^+$ Def. of \oplus

Thus, $k^+ \in L$.

From (1), (2) we get that L is a successor set and $L \subseteq \mathbb{N}$. From \mathbf{P}_5 we get that $L = \mathbb{N}$.

(viii) Exercise.

(ix) Suppose that

 $L = \{c \in \mathbb{N} | m + c = n + c, \text{ for some } c \in \mathbb{N} \iff m = n\}, m, n \in \mathbb{N}.$ Then prove that L is successor subset of \mathbb{N} .

(**x**) Suppose that

 $L = \{c \in \mathbb{N} | m \cdot c = n \cdot c, \text{ for some } c(\neq 0) \in \mathbb{N} \iff m = n\}, m, n \in \mathbb{N}.$ Then prove that L is successor subset of \mathbb{N} .

(xiii) we will prove the equivalent statement that: if $n \neq 0$ and $m \neq 0$, then $m \cdot n \neq 0$.

Assume that $m \cdot n = 0$

$$\rightarrow m \cdot n = m \cdot 0 \tag{Def. of } \cdot)$$

$$\rightarrow m = 0$$
 (Cancellation law of ·)

 \rightarrow Contradiction since $m \neq 0$.

$$\rightarrow : m \cdot n \neq 0.$$

(xi),(xii)Exercise.

Definition 2.1.11. Let $x, y \in \mathbb{N}$. We say that x less than y and denoted by x < y iff there exist $k \neq 0 \in \mathbb{N}$ such that x + k = y.

Theorem 2.1.12.

- (i) The relation < is transitive relation on \mathbb{N} .
- (ii) $0 < n^+$ and $n < n^+$ for all $n \in \mathbb{N}$.
- (iii) 0 < m or m = 0, for all $m \in \mathbb{N}$.

Proof.

(i),(ii),(iii) Exercise.

Theorem 2.1.13.(Trichotomy)

For each $m, n \in \mathbb{N}$ one and only one of the following is true:

(1) m < n or (2) n < m or (3) m = n.

Proof.

Let $m \in \mathbb{N}$ and

$$L_1 = \{ n \in \mathbb{N} | n < m \},$$

$$L_2 = \{ n \in \mathbb{N} | m < n \},$$

$$L_3 = \{n \in \mathbb{N} | n = m\},\,$$

$$M=L_1 \cup L_2 \cup L_3.$$

- (1) $L_i \neq \emptyset$ and $L_i \subseteq \mathbb{N}$, i = 1,2,3. Therefore, $M \subseteq \mathbb{N}$ and $M \neq \emptyset$.
- (2) To prove that *M* is a successor set.
- (i) To prove that $0 \in M$.

(a) If
$$m = 0$$
, then $0 \in L_3 \longrightarrow 0 \in M$

(Def. of U)

(b) If
$$m \neq 0$$
, then $\exists k \in \mathbb{N} \ni m = k^+$

 $\rightarrow k^+ \in L_2$

 $\rightarrow k^+ \in M$

```
If k \neq 0 \rightarrow m = k + 1 = 1 + k
                                                     (Commutative of +)
            \rightarrow 1 < m
                                                     (Def. of <)
            \rightarrow 0 < 0^+ = 1 < m
                                                     (Theorem 2.1.11(ii))
            \rightarrow 0 < m
                                                     (Since < is transitive)
            \rightarrow 0 \in L_1
                                                     (Def. of L_1)
            \rightarrow 0 \in M
                                                     (Def. of U)
If k = 0 \rightarrow m = k + 1 = 0 + 1 = 1 = 0^+
           \rightarrow 0 < 0^+ = 1 = m \rightarrow 0 < m (Theorem 2.1.11(ii))
           \rightarrow 0 \in L_1
                                                       (Def. of L_1)
           \rightarrow 0 \in M
                                                       (Def. of U)
(ii) Suppose that k \in M. To prove that k^+ \in M.
Since k \in M, then k \in L_1 or k \in L_2 k \in L_3
                                                                  (Def. of U)
(a) If k \in L_1
\rightarrow k < m
                                                   (Def. of L_1)
\rightarrow \exists c \neq 0 \in \mathbb{N} \ni m = k + c
                                                   (Def of <)
\rightarrow \exists l \neq 0 \in \mathbb{N} \ni c = l^+
                                                  (Remark 2.1.9)
\rightarrow m = k + c = k + l^{+} = (k + l)^{+}
                                                  (Def. of +)
\rightarrow m = (k+l)^+ = (l+k)^+
                                                  (Commutative law for +)
\rightarrow m = l + k^+
                                                  (Def. of +)
\rightarrow k^+ < m
                                                   (Def. of <)
\rightarrow k^+ \in L_1
                                                  (Def. of L_1)
\rightarrow k^+ \in M
                                                   (Def. of U)
(b) If k \in L_2
\rightarrow m < k
                                                   (Def. of L_2)
\rightarrow m < k < k^+
                                                   (Theorem 2.1.12(ii))
\rightarrow m < k^+
                                                  (Theorem 2.1.12(i))
\rightarrow k^+ \in L_2
                                                   (Def. of L_2)
\rightarrow k^+ \in M
                                                   (Def. of U)
(c) If k \in L_3
\rightarrow m = k
                                                   (Def. of L_2)
\rightarrow m = k < k^+
                                                   (Theorem 2.1.12(ii))
\rightarrow m < k^+
                                                   (Theorem 2.1.12(i))
```

(Def. of L_2)

(Def. of U)

Theorem 2.1.14.

- (i) For all $n \in \mathbb{N}$, $0 < n \Leftrightarrow n \neq 0$.
- (ii) For all $m, n \in \mathbb{N}$, if $n \neq 0$, then $m + n \neq 0$.
- (iii) $m + k < n + k \Leftrightarrow m < n$, for all $m, n, k \in \mathbb{N}$.
- (iv) For all $k \neq 0 \in \mathbb{N}$, if m < n, then $m \cdot k < n \cdot k$, for all $m, n \in \mathbb{N}$.
- (v) For all $k \neq 0 \in \mathbb{N}$, if $m \cdot k < n \cdot k$, then m < n, for all $m, n \in \mathbb{N}$.

Proof.

(ii) Case 1:

If m = 0.

$$\rightarrow m + n = 0 + n = n \neq 0$$

$$\rightarrow m + n \neq 0$$

Case 2:

If
$$m \neq 0 \rightarrow 0 < m$$

By (i)

Suppose that m + n = 0

$$\rightarrow m < 0$$

$$\rightarrow m < 0$$
 and $0 < m$

Contradiction with Trichotomy Theorem; that is, $m + n \neq 0$.

(v) Let $m \cdot k < n \cdot k$. Assume that m < n

Let $m \cdot k \leq n \cdot k$. Assume that $m \leq n$	
$\rightarrow n < m \text{ or } n = m$	(Trichotomy Theorem)
Suppose $n = m$	
$\rightarrow m \cdot k = n \cdot k$	(Cancelation law of ⋅)
$\rightarrow m \cdot k = n \cdot k$ and $m \cdot k < n \cdot k$	
→ Contradiction with (Trichotomy Theorem)	
Suppose $n < m$	
$\rightarrow n \cdot k < m \cdot k$	(From (iv)
$\rightarrow n \cdot k < m \cdot k \text{ and } m \cdot k < n \cdot k$	
→ Contradiction with Trichotomy Theorem	
$\rightarrow : m < n$	

(i),(iii),(iv) Exercise.

2. Construction of Integer Numbers

Let write $\mathbb{N} \times \mathbb{N}$ as follows:

Let define a relation on $\mathbb{N} \times \mathbb{N}$ as follows:

$$(a,b)R^*(c,d) \iff a+d=b+c$$

 $(a,b)R^*(c,d) \Leftrightarrow a+d=b+c.$ **Example 2.2.1.** (1,0) $R^*(4,3)$ since 1+3=0+4. (1,0) $R^*(6,4)$ since $1+4\neq 0+6$.

Theorem 2.2.2. The relation R^* on $\mathbb{N} \times \mathbb{N}$ is an equivalence relation. Proof.

- (1) Reflexive. For all $(a, b) \in \mathbb{N} \times \mathbb{N}$, a + b = a + b; that is $(a, b)R^*(a, b)$.
- (2) Symmetric. Let $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$ such that $(a, b)R^*(c, d)$. To prove that $(c,d)R^*(a,b).$

$$\rightarrow a + d = b + c$$
 (Def. of R^*)

$$\rightarrow d + a = c + b$$
 (Comm. law for +)

$$\rightarrow c + b = d + a$$
 (Equal properties)

$$\rightarrow$$
 $(c,d)R^*(a,b)$ (Def. of R^*)

(3) Transitive. Let $(a, b), (c, d), (r, s) \in \mathbb{N} \times \mathbb{N}$ such that $(a, b)R^*(c, d)$ and $(c,d)R^*(r,s)$. To prove $(a,b)R^*(r,s)$.

$$a + d = b + c$$
 (Since $(a, b)R^*(a, b)$)(1)

$$c + s = d + r$$
 (Since $(c, d)R^*(r, s)$)(2)

$$\rightarrow$$
 $(a+d)+s=(b+c)+s$ (Add s to both side of (1))

$$= b + (c + s)$$
 (Cancellations low and asso. law for +)(3)

$$= b + (c + s)$$
 (Cancellations 1

$$\rightarrow (a + d) + s = b + (c + s)$$
 (Sub.(2) in (3))

$$= b + (d + r)$$

Remark 2.2.2.

(i) The equivalence class of each $(a, b) \in \mathbb{N} \times \mathbb{N}$ is as follows:

$$\overline{[(a,b)] = [a,b] = \{(r,s) \in \mathbb{N} \times \mathbb{N} | a+s=b+r\}}.$$

$$[1,0] = \{(x,y) \in \mathbb{N} \times \mathbb{N} | 1 + y = 0 + x\}$$

$$= \{(x,y) \in \mathbb{N} \times \mathbb{N} | x = 1 + y\}$$

$$= \{(y+1,y) | y \in \mathbb{N}\}$$

$$= \{(1,0), (2,1), (3,2), \dots\}.$$

$$[0,0] = \{(x,y) \in \mathbb{N} \times \mathbb{N} | 0 + y = 0 + x\}$$

$$= \{(x,y) \in \mathbb{N} \times \mathbb{N} | x = 1\}$$

$$= \{(x,x) | x \in \mathbb{N}\}$$

$$= \{(0,0), (1,1), (2,2), \dots\}.$$
(ii) $[a,b] = \{(a,b), (a+1,b+1), (a+2,b+2), \dots\}.$

(iii) These classes [(a, b)] formed a partition on $\mathbb{N} \times \mathbb{N}$.

Theorem 2.2.3. For all $(x, y) \in \mathbb{N} \times \mathbb{N}$, one of the following hold:

$$(i)[x, y] = [0,0],$$

$$(ii)[x, y] = [z, 0]$$
, for some $z \in \mathbb{N}$,

(iii)
$$[x, y] = [0, z]$$
, for some $z \in \mathbb{N}$.

Proof.

Let $(x, y) \in \mathbb{N} \times \mathbb{N}$. Then by Trichotomy Theorem, there are three possibilities. (1) x = y,

$\rightarrow 0 + y = 0 + x$	Def. of +
\rightarrow (0,0) $R^*(x,y)$	Def. of R^*
$\rightarrow [0,0] = [x,y]$	Def. of [<i>a</i> , <i>b</i>]
(2) x < y,	

(2)
$$x < y$$
,

(3)
$$y < x$$
,

2.2.3. Constriction of Integer Numbers \mathbb{Z} .

Let

$$\mathbb{Z} = \bigcup_{(a,b) \in \mathbb{N} \times \mathbb{N}} [(a,b)] = \bigcup_{a(\neq 0) \in \mathbb{N}} [(a,0)] \bigcup_{b(\neq 0) \in \mathbb{N}} [(0,b)] \bigcup [(0,0)].$$

2.2.4. Addition, Subtraction and Multiplication on $\mathbb Z$

Addition: \oplus : $\mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$:

$$[r,s] \oplus [t,u] = [r+t,s+u]$$

Subtraction: \ominus : $\mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$;

$$\boxed{[r,s]\ominus [t,u]=[r,s]\ominus [u,t]=[r+u,s+t]}$$

Multiplication: $\bigcirc: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$:

$$[r,s] \odot [t,u] = [r \cdot t + s \cdot u, r \cdot u + s \cdot t]$$

Dr. Bassam Al-Asadi and Dr. Emad Al-zangana

Theorem 2.2.5. The relations \oplus , \ominus and \bigcirc are well defined; that is, \oplus and \ominus is function.

Proof.

To prove \oplus is function. Assume that $[r,s] = [r_0,s_0]$ and $[t,u] = [t_0,u_0]$. $[r,s] \oplus [t,u] = [r+t,s+u]$ $[r_0,s_0] \oplus [t_0,u_0] = [r_0+t_0,s_0+u_0]$ To prove $[r+t,s+u] = [r_0+t_0,s_0+u_0]$.

 \ominus and \bigcirc (Exercise)

Example 2.2.7.

$$[2,4] \oplus [0,1] = [2 + 0,4 + 1] = [2,4] = [0,2].$$

 $[5,2] \oplus [8,1] = [5 + 8,2 + 1] = [13,3] = [10,0].$

Notation 2.2.7.

- (i) Let identify the equivalence classes [r, s] according to its form as in Theorem 2.2.3.
- $[a, 0] = +a, a \in \mathbb{N}$, called **positive integer**.
- $[0, b] = -b, b \in \mathbb{N}$, called **negative integer**.
- [0,0] = 0, called the **zero element**.

$$[4,6] = [0,2] = -2$$

$$[9,6] = [3,0] = 3$$

$$[6,6] = [0,0] = 0$$

(ii) The relation $i: \mathbb{N} \to \mathbb{Z}$, defined by i(n) = [n, 0] is 1-1 function, and $i(n+m) = i(n) \oplus i(m)$, $i(n \cdot m) = i(n) \odot i(m)$. So, we can identify n with +n; that is, $\boxed{+n = n}$, $\boxed{+= \bigoplus}$ and $\boxed{\cdot = \bigcirc}$.

Chapter 2. System of Numbers

Theorem 2.2.8.

- (i) $a \in \mathbb{Z}$ is positive if there exist $[x, y] \in \mathbb{Z}$ such that a = [x, y] and y < x.
- (ii) $b \in \mathbb{Z}$ is negative if there exist $[x, y] \in \mathbb{Z}$ such that b = [x, y] and x < y.
- (iii) $(-m) \odot n = -(m \cdot n)$,
- (iv) $m \odot (-n) = -(m \cdot n)$,
- $(\mathbf{v})(-m)\odot(-n)=m\cdot n.$
- (vi) $n + m = m + n, \forall n, m \in \mathbb{Z}$. (Commutative property of +)
- (vii) $(n+m)+c=n+(m+c), \forall n,m,c\in\mathbb{Z}$. (Associative property of +)
- (viii) $n \cdot m = m \cdot n, \forall n, m \in \mathbb{Z}$. (Commutative property of ·)
- (ix) $(n \cdot m) \cdot c = n \cdot (m \cdot c), \forall n, m, c \in \mathbb{Z}$. (Associative property of ·)
- (x) (Cancellation Law for +). m + c = n + c, for some $c \in \mathbb{N} \iff m = n$.
- (xi) (Cancellation Law for ·). $m \cdot c = n \cdot c$, for some $c \neq 0 \in \mathbb{N} \iff m = n$.
- (xii) 0 is the unique element such that 0 + m = m + 0 = m, $\forall m \in \mathbb{N}$.
- (xiii) 1 is the unique element such that $1 \cdot m = m \cdot 1 = m, \forall m \in \mathbb{N}$.
- (xiv) For each element $[x, y] \in \mathbb{Z}$, $[y, x] \in \mathbb{Z}$ is the unique element such that [x, y] + [y, x] = 0.
- (xv) Let $a, b, c \in \mathbb{Z}$. Then $c = a b \Leftrightarrow a = c + b$.
- (**xvi**) For all $b \in \mathbb{Z}$, -(-b) = b.

Proof. Exercise.

Remark 2.2.10.

For each element $a = [x, y] \in \mathbb{Z}$, the unique element in Theorem 2.2.8(xiv) is -a = [y, x].

Definition 2.2.9. ($\mathbb Z$ as an Ordered)

Let [r, s], $[t, u] \in \mathbb{Z}$. We say that [r, s] less than [t, u] and denoted by $[r, s] < [t, u] \Leftrightarrow r + u < s + t$.

This is well defined and agrees with the ordering on N.

Theorem 2.2.10.(Trichotomy For \mathbb{Z})

For each [r, s], $[t, u] \in \mathbb{Z}$ one and only one of the following is true:

(1) [r,s] < [t,u] or (2) [t,u] < [r,s] or (3) [r,s] = [t,u].

Proof.

Since r + u, $t + s \in \mathbb{N}$, so by Trichotomy Theorem for \mathbb{N} one and only one of the following is true:

- $(1) r + u < s + t \longrightarrow [r, s] < [t, u]$
- $(2) s + t < r + u \rightarrow [t, u] < [r, s]$
- (3) $r + u = s + t \rightarrow (r, s)R^*(t, u) \rightarrow [r, s] = [t, u]$

Dr. Bassam Al-Asadi and Dr. Emad Al-zangana

Theorem 2.2.11.

For each $[r, s] \in \mathbb{Z}$, $[r, s] < [0, 0] \Leftrightarrow r < s$.

Proof.

$$[r,s] < [0,0] \Leftrightarrow r+0 < s+0 \Leftrightarrow r < s.$$

Remark 2.2.12.

According to Theorem 2.2.11 and Notation 2.2.7(i), for all
$$[r, s] \in \mathbb{Z}$$
 $[r, s] < [0, 0] \iff r < s \iff [r, r + l]$, where $s = r + l \iff [0, l] < [0, 0] \iff -l < 0$.