Action of Group on The Projective Plane Over Finite Fields

***** Introduction

- 1. GF(q) denote the Galois field of q elements.
- 2. $V(3,q) = \{(a_1, a_2, a_3) | a_i \in GF(q)\}$ be the respective vector space of row vectors of length three with entries in GF(q).
- 3. PG(2,q) be the projective plane over the field GF(q).

The number of points.

The number of lines in PG(2, q) is $q^2 + q + 1$.

There are q + 1 points on every line.

There are q + 1 lines passes through a point.

Companion Matrix

$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_0 & a_1 & a_2 \end{bmatrix}$$

The points are $P(i) = [1,0,0]T^{i-1}$ and the lines are $\ell_i = \ell_1 T^{i-1}$, $i = 1, ..., q^2 + q + 1$ where $\ell_1 = V(X_2)$ be the line passing through points $P(X_0, X_1, X_2)$ with $X_2 = 0$

Definition An n-arc K or arc of degree 2 in PG(2,q) with $n \ge 3$ is a set of n points with property that every lines meets K in at most two points and there is some lines meeting K in exactly two points.

Definition A line ℓ of PG(2,q) is an *i*-secant of an *n*-arc K if $|\ell \cap K| = i$. A 2-secant is called a *bisecant*, a 1-secant a *unisecant* and a 0-secant is an *external line*.

 A_n = Alternating group of degree n.

 D_n = Dihedral group of order $2n = \langle r, s | r^n = s^2 = (rs)^2 = 1 \rangle$.

For details and full descriptions about above groups of order less than 32 see [3].

Pentastigm with Collinearities of its Diagonal Points

Definition An n-stigm K in PG(2,q) is a set of n points, no three of which are collinear, together with the $\frac{1}{2}n(n-1)$ lines that are joins of pairs of the points. The points and lines are called vertices and sides of K.

The intersection points of two sides of K which do not pass through the same vertex is called *diagonal points*.

Since the vertices of K form an n-arc, so, to construct a 5-stigm, started with unique projectively 4-arc, $\Gamma_{41} = \{U_0, U_1, U_2, U\}$ (standard frame) in the projective plane which has stabilizers group isomorphic to S_4 , where $U_0 = [1,0,0], U_1 = [0,1,0], U_2 = [0,0,1], U = [1,1,1].$

The condition to existence a pentastigm with five diagonal points are collinear in PG(2,q) is that $x^2 - x - 1 = 0$ has solution in F_q .

- 1. If q = 19, the equation $x^2 x 1 = 0$ has two solutions 5, -4.
- 2. If q = 29, the equation $x^2 x 1 = 0$ has two solutions 6, -5.
- 3. If q = 31, the equation $x^2 x 1 = 0$ has two solutions 13, -12.
- 4. If q = 41, the equation $x^2 x 1 = 0$ has two solutions α^{21} , α^{39}

Theorem In PG(2,q), the pentastigm which has the 5-arc A_i

1.
$$IA_{19} = \Gamma_{41} \cup \{P(-5, -4, 1)\},\$$

2.
$$\mathcal{A}_{29} = \Gamma_{41} \cup \{P(v^{22}, v^{16}, 1)\},\$$

3.
$$\mathcal{A}_{31} = \Gamma_{41} \cup \{P(w^4, w^{27}, 1)\},\$$

4.
$$\mathcal{A}_{41} = \Gamma_{41} \cup \{P(\alpha^{39}, \alpha, 1)\},\$$

as vertices has five diagonal points which are collinear on the line

1. If
$$q = 19$$
, $\ell = V(-X_0 + 5X_1 + X_2)$,

2. If
$$q = 41$$
, $\ell = V(X_0 - X_1 - 5X_2)$,

3. If
$$q = 41$$
, $\ell = V(X_0 + 19X_1 + 12X_2)$,

4. If
$$q = 41$$
, $\ell = V(\alpha^{21}X_0 - X_1 + X_2)$.

$Action of D_5 on PG(2,41)$

$$C_{\mathcal{A}_{41}} = V(X_0X_1 + \alpha^{20}X_0X_2 - \alpha^{20}X_1X_2)$$

The Dihedral group D_5 generated by

$$r = \begin{bmatrix} \alpha & 0 & 0 \\ 1 & 1 & 1 \\ \alpha^{19} & \alpha^{12} & \alpha^{20} \end{bmatrix}, s = \begin{bmatrix} 0 & \alpha^{22} & 0 \\ \alpha^{19} & \alpha^{21} & \alpha^{20} \\ 1 & 1 & 1 \end{bmatrix}$$

which stabilized the 5-arc \mathcal{A}_{41} has the following effects on the points of PG(2,41).

- **1-** Fixes the conic $C_{\mathcal{A}_{41}}$.
- **2-** Acts transitively on \mathcal{A}_{41} since

$$(U_0, rs) \mapsto U_1,$$

 $(U_0, rs^3) \mapsto U_2,$
 $(U_0, rs^4) \mapsto U,$
 $(U_0, rs^2) \mapsto P(\alpha^{39}, \alpha, 1) = 112.$

3- The elements of D_5 divided into two classes according to fixing points of PG(2,41) by sending each point to itself as illustrated bellow.

Class 1: The five elements r, rs, rs^2, rs^3, rs^4 of order two fixes 43 points if acts on PG(2,41) which is exactly line plus the diagonal point of \mathcal{A}_{41}

	$\ell_i \cup P_j$
r	$\ell_{320} \cup P(1,\alpha^2,1)$
rs	$\ell_3 \cup P(\alpha^{19}, 1, 0)$
rs^2	$\ell_{375} \cup P(\alpha, \alpha, 1)$
rs^3	$\ell_{807} \cup P(\alpha^{39}, 0, 1)$
rs^4	$\ell_{292} \cup P(0,1,1)$

Class 2: Each of the four element s, s^2 , s^3 , s^4 of order five fixes three points one of the points is $P(\alpha^{38}, \alpha^{39}, 1)$ which is intersection point of the five lines ℓ_i , i = 3,292,320,375,807.

4- The lines ℓ_i , i=3,292,320,375,807 have the property that unisecant to \mathcal{A}_{41} and bisecant to \mathcal{C}_{41} .

❖ The unique 6-arc K with stabilizer group A_5 is just A_{41} union the intersection point of the lines ℓ_i , i = 3, 292, 320, 375, 807. The arc K in numeral form is $K = \{1,2,3,323,112,443\}$,

Conclusion

- 1- There is an arc of degree five $\xi = \{P_1, P_2, P_3, P_4, P_5\}$ which has stabilizer group $G(\xi)$ of type D_5 .
- 2- The pentastigm which has ξ as a vertex has collinear diagonal points.
- 3- The effect of the group Dihedral group $G(\xi)$ on points of PG(2,q), q=19,29,31,41 depends on the order of its elements. Let G^2 be the set of five elements of $G(\xi)$ of order two and G^5 be the set of four elements of $G(\xi)$ of order five.
- (i) Each elements of G^2 fixes five a subset of the plane of length q+2 by sending it to itself. Each of this set, is a line ℓ_i^* with extra point P_i^* , i=1,2,3,4,5. The five extra points P_i' are exactly the diagonal points of ξ . Also, these lines are the bisecant to the conic C_{ξ} which passes through ξ and unisecants to ξ .
- (ii) Each elements of G^5 fixes a point \mathbf{P}^* which is the intersection point of the five lines ℓ_i^* , i = 1,2,3,4,5.
- 4- The unique six arc with stabilizer group of type A_5 is constructed by adding the point \mathbf{P}^* to ξ . So, the following figure is fixed by the group $G(\xi)$.

