1.4. Rules of Proof

(i) Rule of Replacement.

Any term in a logical formula may be replaced be an equivalent term.

For instance, if $q \equiv r$, then $p \land q \equiv p \land r$ Rep(q:r).

(ii) Rule of Substitution.

A sentence which is obtained by substituting logical propositions for the terms of a theorem is itself a theorem.

For instance, $(p \to q) \lor w \equiv w \lor (p \to q)$ Sub $(p: p \to q)$, Theorem $p \lor w \equiv w \lor$ p.

(iii) Rule of Inference.

$\frac{p}{p \to q}$ $\therefore q$	$ \begin{array}{c} \sim q \\ \underline{p \to q} \\ \vdots \sim p \end{array} $
$p \rightarrow q$	pVq
$\frac{q \to r}{\therefore p \to r}$	$\frac{\sim p}{\therefore q}$
p ∴ pVR	<u>p</u> ∧q ∴ p
р <u>q</u> ∴ р∧q	pVq <u>~ pVr</u> ∴ qVr

Example 1.4.1. Given

- (1) "If it does not rain or if it is not foggy, then the sailing race will be held and the lifesaving demonstration will go on"
- (2) "If the sailing race is held, then the trophy will be awarded"
- (3) "The trophy was not awarded" Does this imply that: "It rained"?

Solution.

- p: rain
- q: foggy
- r: the sailing race will be held
- s: the lifesaving demonstration will go on
- t: then the trophy will be awarded

Symbolically, the proposition is

(1)
$$\sim p \ V \sim q \rightarrow r \wedge s$$

$$(2) s \rightarrow t$$

p

1. ~t	3rd hypothesis
2. $s \rightarrow t$	2nd hypothesis
$3. \sim t \rightarrow \sim s$	Contrapositive of 2

4.
$$\sim$$
s inf (1),(3)
5. \sim pV \sim q \rightarrow r \wedge s 1st hypothesis

6.
$$\sim$$
(r \wedge s) \rightarrow \sim (\sim pV \sim q) Contrapositive of 5

7.
$$\sim r \lor \sim s \rightarrow (p \land q)$$
 De Morgan's law and double negation law from 5

8.
$$\sim r \vee \sim s$$
 inf (4)
9. $p \wedge q$ inf (7),(8)
10. p inf (9)

Example 1.4.2. Use the logical equivalences to show that

(i)
$$\sim$$
(p \rightarrow q) \equiv p $\land \sim$ q,

(ii)
$$\sim$$
(p \vee \sim (p \wedge q)) is a contradiction,

(iii)
$$\sim (p \lor (\sim p \land q)) \equiv (\sim p \land \sim q),$$

(iv)
$$pV(p\Lambda q) \equiv p$$
 (Absorption Law).

Solution.

(i)
$$\sim (p \rightarrow q) \equiv \sim (\sim p \lor q)$$
 Implication Law $\equiv \sim (\sim p) \land \sim q.$ De Morgan's Law Double Negation Law

(ii)
$$\sim (p \lor \sim (p \land q))$$

 $\equiv \sim p \land \sim (\sim (p \land q))$ De Morgan's Law
 $\equiv \sim p \land (p \land q)$ Double Negation Law
 $\equiv (\sim p \land p) \land q$ Associative Law
 $\equiv F \land q$ Contradiction Law
 $\equiv F$ Domination Law and Commutative

Law.

(iii)
$$\sim (p \lor (\sim p \land q))$$

 $\equiv \sim p \land \sim (\sim p \land q)$ De Morgan's Law
 $\equiv \sim p \land (p \lor \sim q)$ De Morgan's Law
 $\equiv \sim p \land (p \lor \sim q)$ Double Negation Law
 $\equiv (\sim p \land p) \lor (\sim p \land \sim q)$ Distribution Law
 $\equiv (p \land \sim p) \lor (\sim p \land \sim q)$ Commutative Law
 $\equiv F \lor (\sim p \land \sim q)$ Contradiction Law
 $\equiv F \lor (\sim p \land \sim q)$ Commutative Law
 $\equiv (\sim p \land \sim q) \lor F$ Commutative Law
 $\equiv (\sim p \land \sim q) \lor F$ Commutative Law
(iv) $p \lor (p \land q)$ Identity (in reverse)
 $\equiv p \land (T \lor q)$ Distributive (in reverse)
 $\equiv p \land T$ Domination
 $\equiv p$ Identity

Example 1.4.3. Find a simple form for the negation of the proposition "If the sun is shining, then I am going to the ball game."

Solution.

This proposition is of the form $p \to q$. Since $\sim (p \to q) \equiv \sim (\sim p \lor q) \equiv (p \land \sim q)$. This is the proposition "The sun is shining, and I am not going to the ball game."