Definition 3.2.1. Any subset "R" of $A \times B$ is called a **relation between A and B** and denoted by R(A, B). Any subset of $A \times A$ is called a **relation on A**.

In other words, if A is a set, any set of ordered pairs with components in A is a relation on A. Since a relation R on A is a subset of $A \times A$, it is an element of the powerset of $A \times A$; that is, $R \subseteq P(A \times A)$.

If R is a relation on A and $(x, y) \in R$, then we write xRy, read as "x is in R-relation to y", or simply, x is in relation to y, if R is understood.

Example 3.2.2.

- (i) Let $A = \{2, 4, 6, 8\}$, and define the relation R on A by $(x, y) \in R$ iff x divides y. Then, $R = \{(2, 2), (2, 4), (2, 6), (2, 8), (4, 4), (4, 8), (6, 6), (8, 8)\}.$
- (ii) Let $A = \mathbb{N}$, and define $R \subseteq A \times A$ by xRy iff x and y have the same remainder when divided 3.

Since A is infinite, we cannot explicitly list all elements of R; but,

for example $(1,4), (1,7), (1,10), ..., (2,5), (2,8), ..., (0,0), (1,1), ... \in R$. Observe, that xRx for $x \in N$ and, whenever xRy then also yRx.

- (iii) Let $A = \mathbb{R}$, and define the relation R on \mathbb{R} by xRy iff $y = x^2$. Then R consists of all points on the parabola $y = x^2$.
- (iv) Let $A = \mathbb{R}$, and define R on \mathbb{R} by xRy iff $x \cdot y = 1$. Then R consists of all pairs $(x, \frac{1}{x})$, where x is non-zero real number.
- (v) Let $A = \{1, 2, 3\}$, and define R on A by xRy iff x + y = 7. Since the sum of two elements of A is at most 6, we see that xRy for no two elements of A; hence, $R = \emptyset$.

For small sets we can use a pictorial representation of a relation R on A: Sketch two copies of A and, if xRy then draw an arrow from the x in the left sketch to the y in the right sketch.

(vi) Let $A = \{a, b, c, d, e\}$, and consider the relation

$$R = \{(a,a), (a,c), (c,d), (d,b), (d,c)\}.$$

An arrow representation of *R* is given in Fig.

We observe that e does not appear at all in the elements of R, and that, for example, e is not the first component of any pair in R. In order to give names to the sets of those elements of A which are involved in R, we make the following.

(vii) Let A be any set. Then the relation $R = \{(x, x) : x \in A\} = i_A$ on A is called the **identity relation on A**. Thus, in an identity relation, every element is related to itself only.

Definition 3.2.3. Let *R* be a relation on *A*. Then

- (i) dom $R = \{x \in A : \text{ There exists some } y \in A \text{ such that } (x,y) \in R\}.$ dom R is called the **domain of** R.
- (ii) ran $R = \{y \in A : \text{There exists some } x \in A \text{ such that } (x, y) \in R\}$ is called the **range of** R.
- (iii) Finally, $fld R = dom R \cup ran R$ is called the **field of R**.

Observe that dom R, ran R, and fld R are all subsets of A.

Example 3.2.4.

- (i) Let A and R be as in Example 3.2.2.(vi); then $dom R = \{a, c, d\}$, ran = $\{a, b, c, d\}$, $fld R = \{a, b, c, d\}$.
- (ii) Let A = R, and define R by xRy iff $y = x^2$; then, dom R = R,

$$ran R = \{ y \in R : y \ge 0 \}, fld R = R.$$

n University College of Science Dept. of Math.

(iii) Let $A = \{1, 2, 3, 4, 5, 6\}$, and define R by xRy iff $x \not \equiv y$ and x divides y; $R = \{(1, 2), (1, 3), ..., (1, 6), (2, 4), (2, 6), (3, 6)\}$, and dom $R = \{1, 2, 3\}$, $ran R = \{2, 3, 4, 5, 6\}$, fld R = A.

(iv) Let A = R, and R be defined as $(x, y) \in R$ iff $x^2 + y^2 = 1$. Then $(x, y) \in R$ iff (x, y) is on the unit circle with centre at the origin. So,

$$dom R = ran R = fld R = \{z \in \mathbb{R}: -1 \le z \le 1\}.$$

Definition 3.2.5. Reflexive, Symmetric and Transitive Relations Let R be a relation on a nonempty set A.

- (i) R is **reflexive** if $(x, x) \in R$ for all $x \in A$.
- (ii) R is antisymmetric if for all $x, y \in A$, $(x, y) \in R$ and $(y, x) \in R$ implies x = y.
- (iii) R is **transitive** if for all $x, y, z \in A$, $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$.
- (iv) R is symmetric if whenever $(x, y) \in R$ then $(x, y) \in R$.