Definition 3.2.12. Inverse of a Relation

Suppose $R \subseteq A \times B$ is a relation between *A* and *B* then the inverse relation $R^{-1} \subseteq B \times A$ is defined as the relation between *B* and *A* and is given by

 $bR^{-1}a$ if and only if aRb. That is, $R^{-1} = \{(b, a) \in B \times A : (a, b) \in R\}.$

Example 3.2.13. Let *R* be the relation between \mathbb{Z} and \mathbb{Z}^+ defined by

mRn if and only if $m^2 = n$.

Then

 $R = \{(m,n) \in \mathbb{Z} \times \mathbb{Z}^+ : m^2 = n\},\$

and

$$R^{-1} = \{(n,m) \in \mathbb{Z}^+ \times \mathbb{Z} : m^2 = n\}.$$

For example, $-3 R 9$, $-4 R 16$, $16 R^{-1} 4$, $9 R^{-1} 3$, etc.

Remark 3.2.14.

If R is partial order relation on $A \neq \emptyset$, then R^{-1} is also partial order relation on A.

Proof.

(i) **Reflexive.** Let $x \in A$.

 \Rightarrow (*x*, *x*) \in *R* (Reflexivity of *A*) \Rightarrow (*x*, *x*) \in *R*⁻¹ (Def of *R*⁻¹)

(ii) Antisymmetric. Let $(x, y) \in R^{-1}$ and $(y, x) \in R^{-1}$. To prove x = y.

$$\Rightarrow$$
 $(y, x) \in R \land (x, y) \in R$ (Def of R^{-1})

 \Rightarrow *y* = *x* (since *R* is antisymmetric).

(iii) Transitive. Let $(x, y) \in R^{-1}$ and $(y, z) \in R^{-1}$. To prove $(x, z) \in R^{-1}$.

 $\Longrightarrow (y,x) \in R \wedge (z,y) \in R \ (\text{Def of } R^{-1})$

 \Rightarrow $(z, x) \in R$ (since R is transitive) \Rightarrow $(x, z) \in R^{-1}$ (Def of R^{-1}).

Definition 3.2.15. Partitions

Let *A* be a set and let $A_1, A_2, ..., A_n$ be subsets of *A* such (i) $A_i \neq \emptyset$ for all *i*, (ii) $A_i \cap A_j = \emptyset$ if $i \neq j$, (iii) $A = \bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup ... \cup A_n$. Then the sets A_i partition the set A and these sets are called the **classes of the partition.**

Remark 3.2.16. An equivalence relation on *A* leads to a partition of *A*, and vice versa for every partition of *A* there is a corresponding equivalence relation.

Definition 3.2.17. The Composition of Two Relations

The composition of two relations $R_1(A, B)$ and $R_2(B, C)$ is given by $R_2 \circ R_1$ where

 $(a, c) \in R_2 \ o \ R_1$ if and only there exists $b \in B$ such that $(a, b) \in R_1$ and $(b, c) \in R_2$.

Remark 3.2.18. The composition of relations is associative; that is,

$$(R_3 \ o \ R_2 \) \ o \ R_1 \ = \ R_3 \ o \ (R_2 \ o \ R_1)$$

Example 3.2.19.

(i) Let sets $A = \{a, b, c\}, B = \{d, e, f\}, C = \{g, h, i\}$ and relations $R(A, B) = \{(a, d), (a, f), (b, d), (c, e)\}$ and $S(B, C) = \{(d, h), (d, i), (e, g), (e, h)\}$. Then we graph these relations and show how to determine the composition pictorially *S* o *R* is determined by choosing $x \in A$ and $y \in C$ and checking if there is a route from *x* to *y* in the graph. If so, we join *x* to *y* in *S* o *R*.

For example, if we consider a and h we see that there is a path from a to d and from d to h and therefore (a, h) is in the composition of S and R.

(ii) Let $R^{-1} = \{(b, a) | (a, b) \in R\}$. The composition of *R* and R^{-1} yields: $R^{-1} \circ R = \{(a, a) | a \in dom R\} = i_A \text{ and } R \circ R^{-1} = \{(b, b) | b \in dom R^{-1}\} = i_B$.

Definition 3.2.19. Union and Intersection of Relations

(i) The union of two relations $R_1(A, B)$ and $R_2(A, B)$ is subset of $A \times B$ and defined as

 $(a, b) \in R_1 \cup R_2$ if and only if $(a, b) \in R_1$ or $(a, b) \in R_2$.

(ii) The intersection of two relations $R_1(A, B)$ and $R_2(A, B)$ is subset of $A \times B$ and defined as

 $(a, b) \in R_1 \cap R_2$ if and only if $(a, b) \in R_1$ and $(a, b) \in R_2$.

Remark 3.2.20. The relation R_1 is a subset of R_2 ($R_1 \subseteq R_2$) if whenever $(a, b) \in R_1$ then $(a, b) \in R_2$.