Chapter Three Relations on Sets

3.1 Cartesian Product

Definition 3.1.1. A set A is called

- (i) **finite** set if A contains finite number of element, say n, and denote that by |A| = n. The symbol |A| is called the **cardinality** of A,
- (ii) infinite set if A contains infinite number of elements.

Definition 3.1.2. The Cartesian product (or cross product) of A and B, denoted by $A \times B$, is the set $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$.

- (1) The elements (a, b) of $A \times B$ are ordered pairs, a is called the **first** coordinate (component) of (a, b) and b is called the second coordinate (component) of (a, b).
- (2) For pairs (a, b), (c, d) we have $(a, b) = (c, d) \Leftrightarrow a = c$ and b = d.
- (3) The *n*-fold product of sets A_1 , A_2 , ..., A_n is the set of *n*-tuples

$$A_1 \times A_2 \times ..., \times A_n = \{(a_1, a_2, ..., a_n) | a_i \in A_i \text{ for all } 1 \le i \le n\}.$$

Example 3.1.3. Let $A = \{1,2,3\}$ and $B = \{4,5,6\}$.

(i)
$$A \times B = \{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}.$$

Dr. Bassam Al-Asadi and Dr. Emad Al-Zangana

(ii)
$$B \times A = \{(4,1), (4,2), (4,3), (5,1), (5,2), (5,3), (6,1), (6,2), (6,3)\}.$$

Remark 3.1.4.

- (i) For any set A, we have $A \times \emptyset = \emptyset$ (and $\emptyset \times A = \emptyset$) since, if $(a, b) \in$ $A \times \emptyset$, then $a \in A$ and $b \in \emptyset$, impossible.
- (ii) If |A| = n and |B| = m, then $|A \times B| = nm$. Also, A or B is infinite set then cross product $A \times B$ is infinite set.
- Example 3.1.3 showed that $A \times B \neq B \times A$. (iii)

Theorem 3.1.5. For any sets A, B, C, D

- (i) $A \times B = B \times A \Leftrightarrow A = B$.
- if $A \subseteq B$, then $A \times C \subseteq B \times C$, (ii)
- $A \times (B \cap C) = (A \times B) \cap (A \times C),$ (iii)
- $A \times (B \cup C) = (A \times B) \cup (A \times C)$ (iv)
- $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D),$ **(v)**
- $A \times (B C) = (A \times B) (A \times C).$ (vi)

Proof.

(i) The necessary condition. Let $A \times B = B \times A$. To prove A = B.

Let $x \in A \Longrightarrow (x, y) \in A \times B, \forall y \in B$. Def. of \times

> \Rightarrow $(x, y) \in B \times A$ By hypothesis

 $\Leftrightarrow x \in B \land y \in A$ Def. of \times

 $\Rightarrow x \in B \Rightarrow A \subseteq B$ (1) Def. of \subseteq

By the same way we can prove that $B \subseteq A$.

Therefore, A = BInf(1),(2).

The sufficient condition. Let A = B. To prove $A \times B = B \times A$.

Since $A \times A = A \times A \Rightarrow A \times B = B \times A$ By hypothesis.

(vi) $A \times (B - C) = (A \times B) - (A \times C)$.

Mustansiriyah University

College of Science Dept. of Math.

$$(x,y) \in A \times (B-C) \iff x \in A \land y \in (B-C)$$
 Def. of \times

$$\Leftrightarrow x \in A \land (y \in B \land y \notin C)$$

$$\Leftrightarrow (x \in A) \land (x \in A) \land (y \in B \land y \notin C)$$
 Idempotent Law of \land

$$\Leftrightarrow$$
 $(x \in A \land y \in B) \land (x \in A \land y \notin C)$

$$\Leftrightarrow$$
 $(x, y) \in (A \times B) \land (x, y) \notin (A \times C)$ Def

$$\Leftrightarrow$$
 $(x, y) \in (A \times B) - (A \times C)$

Def. of -