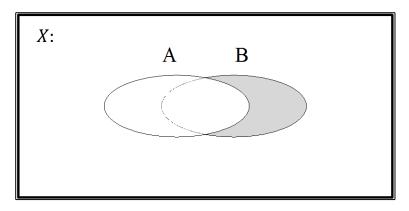
Definition 2.2.12. Let A and B be subsets of a set X. The set B - A, called the **difference** of B and A, is the set of all elements in B which are not in A. Thus,

$$B - A = \{x \in X \mid x \in B \text{ and } x \notin A\}.$$

Example 2.2.13.

(i) Let
$$B = \{2,3,6,10,13,15\}$$
 and $A = \{2,10,15,21,22\}$. Then $B - A = \{3,6,13\}$.

- (ii) $\mathbb{Z} \mathbb{Z}_o = \mathbb{Z}_e$.
- (iii) Given that the box below represents X, the shaded area represents B A.



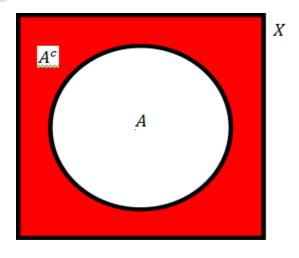
Theorem 2.2.14. Let *A* and *B* be subsets of a set *X*. Then

(i)
$$A - A = \emptyset$$
, $A - \emptyset = A$ and $\emptyset - A = \emptyset$

Definition 2.2.15. If $A \subseteq X$, then X - A is called the **complement** of A with respect to X and denoted that by the symbol

$$X/A$$
 or A^c .

Thus, $A^c = \{x \in X \mid x \notin A\}.$



Theorem 2.2.16. Let A and B be subsets of a set X. Then

- (i) $A^{cc} = A$.
- (ii) $X^c = \emptyset; \ \emptyset^c = X.$
- (iii) $A \cup A^c = X$, $A \cap A^c = \emptyset$ (Inverse Laws)
- (iv) $A \cap A^c = \emptyset$; $A \cup A^c = X$.
- (v) If $A \subseteq B$, then $B^c \subseteq A^c$.
- (vi) $A \cap B = \emptyset \iff A \subseteq B^c$.

Proof. Exercise.

Theorem 2.2.17. Let A and B be subsets of a set X. Then

(i)
$$(A \cup B)^c = A^c \cap B^c$$
, (De Morgan's Law)
 $(A \cap B)^c = A^c \cup B^c$.

- (ii) Let A and B be subsets of a set X. Then, $A B = A \cap B^c$.
- (iii) $A^{c} B^{c} = B A$.

Proof.

(i) Let
$$x \in (A \cup B)^c$$

$$\Leftrightarrow x \notin (A \cup B)$$

$$\Leftrightarrow \sim (x \in A \cup B)$$

$$\Leftrightarrow \sim (x \in A \cup B)$$

$$\Leftrightarrow \sim (x \in A \cup X \in B)$$

$$\Leftrightarrow \sim (x \in A) \land \sim (x \in B)$$

$$\Leftrightarrow x \notin A \land x \notin B$$

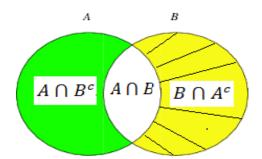
$$\Leftrightarrow x \in A^c \land x \in B^c$$

$$\Leftrightarrow x \in A^c \cap B^c$$
Def. of complement
$$\Rightarrow Def. of A \cup B$$
Def. of A \(\text{D}\) B

Def. of Complement
$$\Rightarrow Def. of \cap B$$
Def. of \(\text{C}\)

(ii)
$$A - B = \{x \in X \mid x \in A \text{ and } x \notin B\}$$

= $\{x \in X \mid x \in A \text{ and } x \in B^c\}$ Def. of complement of B^c
= $A \cap B^c$ Def. of complement intersection



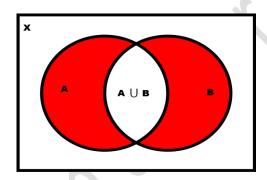
(iii) Exercise.

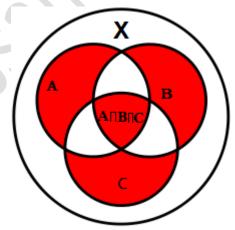
Definition 2.2.18. Let *A* and *B* be subsets of a set *X*. The set

$$A \triangle B = (A - B) \cup (B - A)$$

is called the symmetric difference.

Sometimes the symbol $A \oplus B$ is used for symmetric difference.



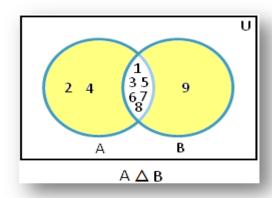


Example 2.2.19. Let $A = \{1,2,3,4,5,6,7,8\}$ and $B = \{1,3,5,6,7,8,9\}$ are subsets of $U = \{1,2,3,4,5,6,7,8,9,10\}$.

$$A - B = \{2,4\}$$

$$B - A = \{9\}$$

$$A \triangle B = (A - B) \cup (B - A) = \{2,4,9\}.$$



Theorem 2.2.20. Let A, B and C are subsets of X. Then

(ii) $A \triangle \emptyset = A$.

- (iii) $A \triangle B = \emptyset \iff A = B$.
- (iv) $A \triangle B = B \triangle A$.
- (v) $A \triangle A = \emptyset$.

Proof. Exercise.

In the following theorem the properties of union, intersection, complementation, symmetric difference and power set are given.

Theorem 2.2.21.

- (i) $A (B \cap C) = (A B) \cup (A C)$ De Morgan's Low on set difference $A (B \cup C) = (A B) \cap (A C)$
- (ii) $A (A \cap B) = (A B) = (A \cup B) B$.
- (iii) $(A \cap B) C = (A C) \cap (B C)$.
- (iv) $(A B) \cap (C D) = (C B) \cap (A D)$
- (v) If $A \subseteq B$, then $P(A) \subseteq P(B)$
- (vi) $P(A) \cap P(B) = P(A) \cap P(B)$.
- (vii) $P(A) \cup P(B) \subseteq P(A \cup B)$.
- (viii) $A = B \Leftrightarrow P(A) = P(B)$.
- (ix) $A \cap B = \emptyset \iff P(A) \cap P(B) = \emptyset$.
- (x) $A \triangle B = (A \cup B) (A \cap B)$.
- (xi) $A \triangle (B \triangle C) = (A \triangle B) \triangle C$. Associative Law
- (xii) $A \triangle C = B \triangle C \implies A = B$.
- (xiii) If $A \subseteq B$ and C = B A, then A = B C.

Proof.

(i)
$$A - (B \cap C) = A \cap (B \cap C)^c$$
 Theorem 2.2.17(ii)
 $= A \cap (B^c \cup C^c)$ De Morgan's Law
 $= (A \cap B^c) \cup (A \cap C^c)$ Dist Law
 $= (A - B) \cup (A - C)$. Theorem 2.2.17(ii)

(vii) Let $H \in P(A) \cap P(B)$

$$\Rightarrow H \in P(A) \land H \in P(B) \quad \text{Def. } \cap$$

$$\Rightarrow H \subseteq A \land H \subseteq B \quad \text{Def. of power set}$$

$$\Rightarrow H \subseteq (A \cap B) \quad \text{Def. } \cap$$

$$\Rightarrow H \in P(A \cap B) \quad \text{Def. of power set}$$

(xi)
$$x \in A \triangle B \iff x \in (A - B) \cup (B - A)$$

Def. of Δ

$$\iff x \in (A-B) \lor (B-A)$$

Theorem U

$$\Leftrightarrow x \in A \land x \notin B \quad \lor \quad x \in B \land x \notin A$$

Def. of difference

 $x \in A \lor \notin A$ $x \notin B \lor x \notin A$

$$\Leftrightarrow$$
 $x \in A \lor x \in B$ \land T Tautology

 $x \notin B \lor x \notin A$

$$\Leftrightarrow \qquad x \in A \lor x \in B \qquad \text{Identity Law of } \land$$

$$x \in B^c \lor x \in A^c$$

$$\Leftrightarrow$$
 $x \in (A \lor B)$

$$\Lambda \\
x \in (B^c \vee A^c)$$

$$\Leftrightarrow \qquad \qquad x \in (A \cup B)$$

Def. of ∪ and De Morgan's Law

$$\Leftrightarrow \qquad x \in (A \cup B) \cap (A \cap B)^c$$

$$\Leftrightarrow$$
 $x \in (A \cup B) - (A \cap B)$ Theorem 2.2.15(ii)