2.2. Equality of Sets

Definition 2.2.1. Two sets, A and B, are said to be **equal** if and only if A and B contain exactly the same elements and denote that by A = B. That is, A = B if and only if $A \subseteq B$ and $B \subseteq A$.

The description $A \neq B$ means that A and B are not equal sets.

Example 2.2.2.

Let \mathbb{Z}_e be the set of even integer numbers and $B = \{x | x \in \mathbb{Z} \text{ and divisible by 2}\}$. Then $\mathbb{Z}_e = B$.

Proof.

To prove $\mathbb{Z}_e \subseteq B$.

$$\mathbb{Z}_e = \{2n | n \in \mathbb{Z}\}.$$

$$x \in \mathbb{Z}_e \iff \exists \ n \in \mathbb{Z} : x = 2n$$
 Def. of \mathbb{Z}_e .
 $\Rightarrow \frac{x}{2} = n$ Divide both side of $x = 2n$ by 2.
 $\Rightarrow x \in B$ Def. of B .

$$(1) \implies \mathbb{Z}_e \subseteq B \qquad \qquad \text{Def. of subset.}$$

To prove $B \subseteq \mathbb{Z}_e$.

$$x \in B \iff \exists n \in \mathbb{Z} : \frac{x}{2} = n$$
 Def. of \mathbb{Z}_e .
 $\Rightarrow x = 2n$ Multiply $\frac{x}{2} = n$ by 2.
 $\Rightarrow x \in \mathbb{Z}_e$ Def. of \mathbb{Z}_e .
(2) $\Rightarrow B \subseteq \mathbb{Z}_e$ Def. of subset.

$$\mathbb{Z}_{\rho} = B$$
 inf (1),(2) and def. of equality.

Remark 2.2.3.

- (i) Two equal sets always contain the same elements. However, the rules for the sets may be written differently, as in Example 2.2.2.
- (ii) Since any two empty sets are equal, therefore, there is a unique empty set.
- (iii) A is said to be a **proper subset** of B is and only if
- $(1) A \neq \emptyset$, $(2) A \subset B$ and $(2) A \neq B$.
- (iv) the symbols \subseteq , \subset , \nsubseteq are used to show a relation between two sets and not between an element and a set. With one exception, if x is a member of a set A, we may write $x \in A$ or $\{x\} \subseteq A$, but **not** $x \subseteq A$.
- (v) $\phi \neq \{\phi\}$.
- (vi) For every set $A, \phi \subseteq A$.

Mustansiriyah University

College of Science Dept. of Math.

(2017-2018)

Theorem 2.2.4. (Properties of Set Equality)

(i) For any set A, A = A.

(Reflexive Property)

(ii) If A = B, then B = A.

(Symmetric Property)

(iii) If A = B and B = C, then A = C. (Transitive Property)

Definition 2.2.5. Let A and B be subsets of a set X. The **intersection** of A and B is the set

$$A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\},\$$

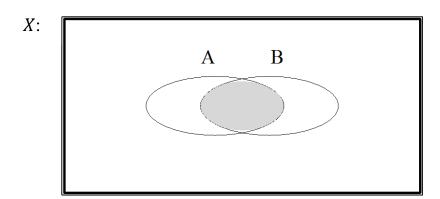
or

$$A \cap B = \{x \mid x \in A \land x \in B\}.$$

Therefore, $A \cap B$ is the set of all elements in common to both A and B.

Example 2.2.6.

(i) Given that the box below represents X, the shaded area represents $A \cap B$:



(ii) Let
$$A = \{2,4,5\}$$
 and $B = \{1,4,6,8\}$. Then, $A \cap B = \{4\}$.

(iii) Let
$$A = \{2,4,5\}$$
 and $B = \{1,3\}$. Then $A \cap B = \emptyset$.

Definition 2.2.7. If two sets, A and B are two sets such that $A \cap B = \emptyset$ we say that A and B are **disjoint.**

Definition 2.2.8. Let A and B be two subsets of a set X. The **union** of A and B is the set

$$A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\},\$$

or

$$A \cup B = \{x \mid x \in A \lor x \in B\}.$$

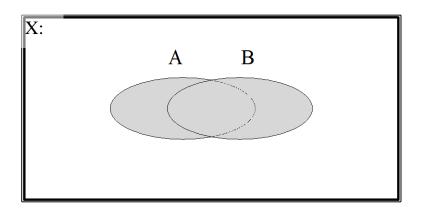
Dr. Bassam Al-Asadi and Dr. Emad Al-Zangana

(2017-2018)

Therefore, $A \cup B =$ the set of all elements belonging to A or B.

Example 2.2.9.

(i) Given that the box below represents X, the shaded area represents $A \cup B$:



(ii) Let
$$A = \{2,4,5\}$$
 and $B = \{1,4,6,8\}$. Then, $A \cup B = \{1,2,4,5,6,8\}$.

(iii)
$$\mathbb{Z}_e \cup \mathbb{Z}_o = \mathbb{Z}$$
.

Remark 2.2.10.

It is easy to extend the concepts of intersection and union of two sets to the intersection and union of a finite number of sets. For instance, if $X_1, X_2, ..., X_n$ are sets, then

$$X_1 \cap X_2 \cap ... \cap X_n = \{x | x \in X_i \text{ for all } i = 1,..., n\}$$

and

$$X_1 \cap X_2 \cap ... \cap X_n = \{x | x \in X_i \text{ for all } i = 1,..., n\}$$

 $X_1 \cup X_2 \cup ... \cup X_n = \{x | x \in X_i \text{ for some } i = 1,2,..., n\}.$

Similarly, if we have a collection of sets $\{X_i: i=1,2,...\}$ indexed by the set of positive integers, we can form their intersection and union. In this case, the intersection of the X_i is

$$\bigcap_{i=1}^{\infty} X_i = \{ x \in X_i \text{ for all } i = 1, 2, \dots \}$$

and the union of the X_i is

Mustansiriyah University

College of Science Dept. of Math.

$$\bigcup_{i=1}^{\infty} X_i = \{ x \in X_i \text{ for some } i = 1, 2, \dots \}.$$

Theorem 2.2.11. Let A, B, and C be arbitrary subsets of a set X. Then

(i) $A \cap B = B \cap A$ (Commutative Law for Intersection)

 $A \cup B = B \cup A$

(Commutative Law for Union)

- $A \cap (B \cap C) = (A \cap B) \cap C$ (Associative Law for Intersection) (ii) $A \cup (B \cup C) = (A \cup B) \cup C$ (Associative Law for Union)
- $A \cap B \subseteq A$ (iii)
- $A \cap X = A$; $A \cup \emptyset = A$ (iv)
- $A \subseteq A \cup B$ **(v)**
- $A \cup X = X$; $A \cap \emptyset = \emptyset$ (vi)
- (vii) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (Distributive Law of Union with respect to Intersection).
- (viii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributive Law of Intersection with respect to Union),
- $A \cup A = A, A \cap A = A$ (ix)

(Idempotent Laws)

 $A \cup \emptyset = A, A \cap X = A$ (\mathbf{x})

(Identity Laws)

 $A \cup X = X$, $A \cap \emptyset = \emptyset$ (xi)

(Domination Laws)

(xii) $A \cup (A \cap B) = A$

(Absorption Laws)

 $A \cap (A \cup B) = A$.

Proof.

(i) $A \cap B = B \cap A$. This proof can be done in two ways.

The first proof

Uses the fact that the two sets will be equal only if $(A \cap B) \subseteq (B \cap A)$ and $(B \cap A) \subseteq (A \cap B)$.

(1) Let x be an element of $A \cap B$

Therefore, $x \in A \land x \in B$

Thus, $x \in B \land x \in A$

Hence, $x \in B \cap A$

Therefore, $A \cap B \subseteq B \cap A$

Definition of $A \cap B$

Commutative property of Λ

Definition of $B \cap A$

(2) Let x be an element of $B \cap A$

Mustansiriyah University

Therefore, $x \in B \land x \in A$ Thus, $x \in A \land x \in B$ Hence, $x \in A \cap B$ Therefore $B \cap A \subseteq A \cap B$ Thus, $A \cap B = B \cap A$ Definition of $B \cap A$ Commutative property of Λ Definition of $A \cap B$

The second proof

$$A \cap B = \{x \mid x \in A \cap B\}$$

$$= \{x \mid x \in A \land x \in B\}$$

$$= \{x \mid x \in B \land x \in A\}$$

$$= \{x \mid x \in B \cap A\}$$

$$= B \cap A$$

Definition of $A \cap B$ Commutative property of Λ Definition of $B \cap A$

(iii) $(A \cap B) \subseteq A$

It must be shown that each element of $A \cap B$ is an element of A.

Let $x \in A \cap B$ Thus, $x \in A \land x \in B$ Hence, $x \in A$

definition of $A \cap B$

Therefore, $(A \cap B) \subseteq A$

(iv) $A \cap X = A$

 $(1)\,A\cap X\,\subset\, A$

inf (iii) above

(2) Let $x \in A$ Thus, $x \in X$ $A \subseteq X$ is given Hence, $x \in A \land x \in X$ Definition of \land Therefore, $x \in A \cap X$ Definition of \cap Thus, $A \subseteq A \cap X$ Definition of \subseteq

Thus, $A \cap X = A$ inf(1),(2)