Chapter Two Sets

2.1. Definitions

Definition 2.1.1. A **set** is a collection of (objects) things. The things in the collection are called **elements (member)** of the set.

A set with no elements is called **empty set** and denoted by \emptyset ; that is, $\emptyset = \{\}$. A set that has only one element, such as $\{x\}$, is sometimes called a singleton set.

List of the symbols we will be using to define other terminologies:

or: such that

 \in : an element of

∉ : not an element of

 \subset **or** \subseteq : a proper subset of

 \subseteq : a subset of

⊈ : not a subset of

N : Set of all natural numbersZ : Set of all integer numbers

Z+ : Set of all positive integer numbers
Z- : Set of all negative integer numbers

 \mathbb{Z}_o : Set of all odd numbers \mathbb{Z}_e : Set of all even numbers \mathbb{Q} : Set of all rational numbers \mathbb{R} : Set of all real numbers

Set Descriptions 2.1.2.

(i) Tabulation Method

The elements of the set listed between commas, enclosed by braces. (1) {1,2,37,88,0}

Mustansiriyah University

College of Science Dept. of Math.

- (2) $\{a, e, i, o, u\}$ Consists of the lowercase vowels in the English alphabet.
- (3) $\{..., -4, -2,0,2,4,6\}$ Continue from left side $\{-4, -2,0,2,4,6, ...\}$ Continue from right side $\{..., -4, -2,0,2,4,6, ...\}$ Continue from left and right sides.
- $(4) B = \{\{2,4,6\},\{1,3,7\}\}\$

(ii) Rule Method

Describe the elements of the set by listing their properties writing as

$$S = \{x | A(x)\},\$$

where A(x) is a statement related to the elements x. Therefore,

$$x \in S \iff A(x)$$
 is hold

(1) $A = \{x | x \text{ is a positive integers and } x > 10\}$

$$A = \{x | x \in \mathbb{Z}^+ \text{and } x > 10\}.$$

(2) $\mathbb{Z}_o = \{x | x = 2n - 1 \text{ and } n \in \mathbb{Z}\}\$ = $\{2n - 1 | n \in \mathbb{Z}\}.$

(3) $\{x \in \mathbb{Z} | |x| < 4\} = \{-3, -2, -1, 0, 1, 2, 3\}.$

 $(4) \{ x \in \mathbb{Z} | x^2 - 2 = 0 \} = \emptyset.$

Examples 2.1.3.

(i) $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ Integer numbers.

(ii) $\mathbb{Z}_e = \{x | x = 2 \text{ and } n \in \mathbb{Z}\}$

 $= \{2n | n \in \mathbb{Z}\}$. Even numbers

Note that 2 is an element of \mathbb{Z}_e so, we write $2 \in \mathbb{Z}$. But, $5 \notin \mathbb{Z}_e$.

(iii) Let C be the set of all natural numbers which are less than 0.

In this set, we observe that there are no elements. Hence, C is an empty set; that is,

$$C = \emptyset$$
.

Definition 2.1.4.

(i) A set A is said to be a **subset** of a set B if every element of A is an element of B and denote that by $A \subseteq B$. Therefore,

$$A \subseteq B \iff \forall x (x \in A \Longrightarrow x \in B).$$

(ii) If A is a nonempty subset of set B and B contains an element which is not a member of A, then A is said to be **proper subset** of B and denoted this by $A \subset B$ or $A \subseteq B$.

We use the expression $A \nsubseteq B$ means that A is **not** a subset of B.

Examples 2.1.5.

Mustansiriyah University College of Science Dept. of Math.

- (i) An empty set \emptyset is a subset of any set B. If this were not so, there would be some element $x \in \emptyset$ such that $x \notin B$. However, this would contradict with the definition of an empty set as a set with no elements.
- (ii) Let *B* be the set of natural numbers. Let *A* be the set of even natural numbers. Clearly, *A* is a subset of *B*. However, *B* is not a subset of *A*, for $3 \in B$, but $3 \notin A$.

Theorem 2.1.6. (Properties of Sets)

Let A, B, and C be sets.

- (i) For any set $A, A \subseteq A$ (Reflexive Property)
- (ii) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$ (Transitive Property) **Proof.**

(ii)

- 1 $(A \subseteq B) \Leftrightarrow \forall x (x \in A \Longrightarrow x \in B)$ Hypothesis and Def.
- 2 $(B \subseteq C) \Leftrightarrow \forall x (x \in B \Rightarrow x \in C)$ Hypothesis and Def. $\Rightarrow \forall x (x \in A \Rightarrow x \in C)$ Inf (1),(2) Syllogism Law $\Leftrightarrow A \subseteq C$ Def.

Definition 2.1.7 If X is a set, the **power set** of X is another set, denoted as P(X) and defined to be the set of all subsets of X. In symbols,

$$P(X) = \{A | A \subseteq X\}.$$

That is, $A \subseteq X$ if and only if $A \in P(X)$.

Example 2.1.8.

- (i) \emptyset and a set X are always members of P(X).
- (ii) suppose $X = \{a, b, c\}$. Then

$$P(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}.$$

The way to finding all subsets of X is illustrated in the following figure.

From the above example, if a finite set X has n elements, then it has 2^n subsets, and thus its power set has 2^n elements.

- (iii) $P(\{1,2,4\}) = \{\emptyset, \{0\}, \{1\}, \{4\}, \{0,1\}, \{0,4\}, \{1,4\}, \{1,2,4\}\}.$
- (iv) $P(\emptyset) = {\emptyset}.$
- (v) $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}.$
- (vi) $P(\{\mathbb{Z}, \mathbb{R}\}) = \{\emptyset, \{\mathbb{Z}\}, \{\mathbb{R}\}, \{\mathbb{Z}, \mathbb{R}\}\}.$

The following are wrong statements.

- (v) $P(1) = \{\emptyset, \{1\}\}.$
- (vi) $P(\{1,\{1,2\}\}) = \{\emptyset,\{1\},\{1,2\},\{1,\{1,2\}\}\}.$
- (vii) $P(\{1,\{1,2\}\}) = \{\emptyset,\{\{1\}\},\{\{1,2\}\},\{1,\{1,2\}\}\}.$