(i) Represent as propositional expressions:

Tom is a math major but not computer science major and use De Morgan's Laws to write the negation of the expression, and translate the negation in English. Mad Hir Janeans

(ii) Let

p: "John is healthy"

q: "John is wealthy"

r: "John is wise"

Represent:

John is healthy and wealthy but not wise,

John is not wealthy but he is healthy and wise,

John is neither healthy nor wealthy nor wise.

Q₂ Given the hypotheses:

- (i) "It is not sunny this afternoon and it is colder than yesterday"
- (ii) "We will go swimming only if it is sunny"
- (iii) "If we do not go swimming, then we will take a canoe trip"
- (iv) "If we take a canoe trip, then we will be home by sunset"

Does this imply that "we will be home by sunset"?

Q₃ Find the DNF of $(p \rightarrow q) \rightarrow \sim r$.

Q₄ Find the DNF of p V q.

 Q_5 Find an expression equivalent to p \rightarrow q that uses only \land and \sim .

 $\mathbf{Q_6}$ Convert the following statement into CNF. $(p \to q) \to (\sim r \land q)$.

Q₇ Show that

- (1) $(p \rightarrow q) \land \sim q \implies \sim p$.
- (2) $p \land (p \rightarrow q) \rightarrow \sim q$ is a contingency using a truth table.
- (3) $p \rightarrow (p \lor q)$ is a tautology using a truth table.
- (4) $(p \land q) \rightarrow p$ is a tautology using the table of logical equivalences.
- (5) $[(p \rightarrow q) \land (q \rightarrow r)] \Longrightarrow (p \rightarrow r)$ using a truth table.
- (6) $[(p \lor q) \land \sim p]$) \Rightarrow q using a truth table.
- (7) $(p \land q) \rightarrow (p \lor q)$ is a tautology using the table of logical equivalences.
- (8) $[p \rightarrow (q \rightarrow r)] \equiv [(p \land q) \rightarrow r]$
- using a truth table.
- (9) $[p \rightarrow (q \rightarrow r)] \equiv [q \rightarrow (p \rightarrow r)]$
- using a truth table. using a truth table.
- $\textbf{(10)} \left[(p \land q) \rightarrow p \right] \equiv \left[q \rightarrow (p \lor \sim p) \right]$
- using a truth table.
- (11) $[(p \rightarrow q) \land (p \rightarrow r)] \equiv [p \rightarrow q \land r)]$
- using a truth table.
- (12) $[(p \rightarrow q) \land (p \rightarrow r)] \equiv [(p \lor q) \rightarrow r]$
- using a truth table.
- (13) $[(p \rightarrow q) \land (r \rightarrow s)] \Longrightarrow [(p \lor r) \rightarrow (q \lor s)]$ using a truth table.
- (14) $[(p \leftrightarrow q) \land (r \leftrightarrow s)] \Rightarrow [(p \lor r) \leftrightarrow (q \lor s) \text{ using a truth table.}$
- (15) $[(p \rightarrow q) \land (p \lor r)] \Rightarrow (q \lor r)$
- using a truth table.
- (16) Is \vee commutative or associative?
- (17) Is \vee distributive over \wedge , \vee , or \rightarrow ?
- (18) Is this true $p \vee q \equiv p \leftrightarrow \sim q$?
- **Q8** Determine whether the following arguments are valid or invalid:
- (1) Premises:
- (i) If I read the newspaper in the kitchen, my glasses would be on the kitchen table.
- (ii) I did not read the newspaper in the kitchen.

Conclusion: My glasses are not on the kitchen table.

- (2) Premises:
- (i) If I don't study hard, I will not pass this course
- (ii) If I don't pass this course I cannot graduate this year.

Conclusion: If I don't study hard, I won't graduate this year.