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Questions on Finite Fields

* Itis well known that the set on integers module prime numberp, Z, is
field of order p. Dose there a finite field of order which is not prime?

* If there is a finite field of order not prime, what is the structure of this kind
of a field?

* Itis well known that /, has no proper subfield (prime subfield). Dose
there a field with proper subfield?

Important Result over Finite Fields

- *Every finite field is of prime power order and conversely,
or every prime power, there exists a field whose order is
exactly that prime power.




Questions about the Roots of a Polynomial
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* Example: The polynomial P(X)= X=X =X(X-1) over Z; has
three zeros 0, 1, 3, over Z1> has four zeros o, 1, 4, g and over £+ has
two roots o, 1.

» Example: The polynomial Q(X) = (X* +1)* hasno Z,but it s
reducible.

* If we have a polynomial P (X) of degree d . How many zeros of P are there?

¢/ » Can we find a set containing all zeros of P (X)?




Characteristic of a Field

* The smallest positive integer (if thereis)n such that

1+---+1=0
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called the characteristic of the field( Ring) . If there is no such integer then
we say that the field has characteristic zero.

e Theorem:

. 1-The characteristic of a field is either o or a prime number p.

Every finite field has a prime characteristic .

" 3- The prime subfield is either a copy of 7, or @. .




* Any field has prime subfield.

* Since any finite field cannot have Q as subfield, then must have a prime
subfield of the form Z =~ for some p.

* Any finite field may always be viewed as a finite dimensional vector space
over its prime subfield. This dimension called the degree of the field.

* Theorem: Any finite field with characteristic p has P" elements where n is the
degree of the field. That is, any finite field is prime power.

* *Note that the theorem does not prove the existence of finite fields of these
sizes. To prove existence we need to talk about irreducible polynomials.




* Since any field has no zero divisor, then any polynomial of degree d has at
most d zeros(roots).

Theorem: Let Z,[X] bearing of polynomials andQpolynomial in Z,[X]of
degree n. Then the residue class Z , /(Q) s field of order p" < Qis
irreducible over Z . This field called Galois Field and denoted by GF (p").

Z,/{Q)={a, +a,0+---+a, ,0"" | Q(O) =0} =GF(p")

Nn—1L

Theorem: (2) All the roots of @ are @,0°,0° ..., oP

(2) (GF(p")\{0},)=(0)=1{16,6%,...,6"*}. Ocalled primitive
and the irreducible polynomial which has &as root called primitive
 polynomial.

| (3) For every finite field GF(q) and every positive integer n there
exists an irreducible polynomial in GF(q) over degree n.



* So, it clear that we need to find a primitive polynomial to construct the Galois field.

* Example: s quadratic in Fs[X] is X* +bX + ¢ with b,c € {0,1,~1}. The reducible ones are

XL (X -1 =X24 X+, (X4+1)2=X2-X +1,
XX-1)=X-X, X(X+1) =X+ X, (X)X +1)=X?-1

This leaves the 9 — 6 = 3 reducibles:

X4 X=X -1, X*=X+1

Take X?+ 1 and let 72+ 1 =0; then 72 = -1, and 7* = 1. So X? + 1 is not primitive
since the order of 7 is not 8.




Points of GF(9) using Q(X) = X* - X -1

Power form | Polynomial form | Vector form
1 (1,0)

(0,1)
(L,1)
(11 _1}
{_ -lJﬂ}
(GJ _1}
(_11 _1}
{_ 111}
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* To determined the subfields of the Galois field GF(p") it is enough
to now the divisor of n.

* Example:

The subfields of the finite field F,» can be determined by
listing all positive divisors of 30. The containment relations between these
various subfields are displayed in the following diagram.
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