Finite Fields

Dr. Emad Bakr Al-Zangana Seminar at University of Mustansiriyah

4-9-2017

Questions on Finite Fields

- It is well known that the set on integers module prime number p, \mathbb{Z}_p is field of order p. Dose there a finite field of order which is not prime?
- If there is a finite field of order not prime, what is the structure of this kind of a field?
- It is well known that \mathbb{Z}_p has no proper subfield (prime subfield). Dose there a field with proper subfield?

Important Result over Finite Fields

*Every finite field is of prime power order and conversely, for every prime power, there exists a field whose order is exactly that prime power.

Questions about the Roots of a Polynomial

- Example: The polynomial $P(X) = X^2 X = X(X-1)$ over Z_6 has three zeros 0, 1, 3, over Z_{12} has four zeros 0, 1, 4, 9 and over Z_7 has two roots 0, 1.
- Example: The polynomial $Q(X) = (X^2 + 1)^2$ has no Z_3 but it is reducible.
- If we have a polynomial P(X) of degree d. How many zeros of P are there?
- Can we find a set containing all zeros of P (X)?
- Does for every positive integer n there exists an irreducible polynomial in Z_p of degree n?

Characteristic of a Field

The smallest positive integer (if there is) n such that

$$\underbrace{1+\cdots+1}_{n}=0$$

called the characteristic of the field(Ring). If there is no such integer then we say that the field has characteristic zero.

- Theorem:
- **1-**The characteristic of a field is either o or a prime number p.
- Every finite field has a prime characteristic .
- 3- The prime subfield is either a copy of \mathbb{Z}_p or \mathbb{Q} .

- Any field has prime subfield.
- Since any finite field cannot have \mathbb{Q} as subfield, then must have a prime subfield of the form \mathbb{Z}_p for some p.
- Any finite field may always be viewed as a finite dimensional vector space over its prime subfield. This dimension called the degree of the field.
- Theorem: Any finite field with characteristic p has pⁿ elements where n is the degree of the field. That is, any finite field is prime power.
- *Note that the theorem does not prove the existence of finite fields of these sizes. To prove existence we need to talk about irreducible polynomials.

• Since any field has no zero divisor, then any polynomial of degree *d* has at most *d* zeros(roots).

Theorem: Let $Z_p[X]$ be a ring of polynomials and Q polynomial in $Z_p[X]$ of degree n. Then the residue class $Z_p/\langle Q \rangle$ is field of order $p^n \Leftrightarrow Q$ is irreducible over Z_p . This field called Galois Field and denoted by $GF(p^n)$.

$$Z_{p}/\langle Q \rangle = \left\{ a_{0} + a_{1}\theta + \dots + a_{n-1}\theta^{n-1} \mid Q(\theta) = 0 \right\} = GF(p^{n})$$

Theorem: (1) All the roots of Q are $\theta, \theta^p, \theta^{p^2}, \dots, \theta^{p^{n-1}}$.

(2) $(GF(p^n)\setminus\{0\},.) = \langle\theta\rangle = \{1,\theta,\theta^2,...,\theta^{n-1}\}$. Θ called primitive and the irreducible polynomial which has Θ as root called primitive polynomial.

(3) For every finite field GF(q) and every positive integer n there exists an irreducible polynomial in GF(q) over degree n.

- So, it clear that we need to find a primitive polynomial to construct the Galois field.
- Example: A monic quadratic in $\mathbf{F}_3[X]$ is $X^2 + bX + c$ with $b, c \in \{0, 1, -1\}$. The reducible ones are

$$X^2$$
, $(X-1)^2 = X^2 + X + 1$, $(X+1)^2 = X^2 - X + 1$, $X(X-1) = X^2 - X$, $X(X+1) = X^2 + X$, $(X-1)(X+1) = X^2 - 1$.

This leaves the 9-6=3 irreducibles:

$$X^2 + 1$$
, $X^2 - X - 1$, $X^2 - X + 1$.

Take $X^2 + 1$ and let $\tau^2 + 1 = 0$; then $\tau^2 = -1$, and $\tau^4 = 1$. So $X^2 + 1$ is not primitive since the order of τ is not 8.

Points of GF(9) using $Q(X) = X^2 - X - 1$

Power form	Polynomial form	Vector form	Order
1	1	(1,0)	1
σ	σ	(0,1)	8
σ^2	$\sigma + 1$	(1,1)	4
σ^3	$-\sigma + 1$	(1, -1)	8
σ^4	-1	(-1,0)	8
σ^5	-σ	(0, -1)	4
σ^6	$-\sigma-1$	(-1, -1)	8
σ^7	$\sigma - 1$	(-1,1)	2

• To determined the subfields of the Galois field $GF(p^n)$ it is enough to now the divisor of n.

• Example:

The subfields of the finite field $\mathbb{F}_{2^{30}}$ can be determined by listing all positive divisors of 30. The containment relations between these various subfields are displayed in the following diagram.

Thank you for attention