
Chapter 8

Hamming Codes

To define the Hamming codes Ham(r, q) over Fq, where

n =
qr − 1

q − 1
, r = n − k for r = 1, 2, . . .,

a parity-check matrix H is specified. First, consider the case q = 2.

Definition 8.1. For any positive integer r, let H be an r × n matrix, n = 2r − 1, whose
columns are the elements of V (r, 2) \ {0}.

Example 8.2. (i) r = 2, n = 3, k = 1

[

0 1 1
1 0 1

]

−→ H =

[

1 1 0
1 0 1

]

=⇒ G = [1 1 1] =⇒ Ham(2, 2) = {000, 111},

the binary repetition code of length 3.

(ii) r = 3, n = 7, k = 4





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



 −→ H =





0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1





=⇒ G =









1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1









.

Hence Ham(3, 2) is equivalent to the perfect [7, 4, 3]2 code.

Theorem 8.3. Ham(r, 2) is a perfect [2r − 1, 2r − 1 − r, 3]-code.

Proof By definition, Ham(r, 2)⊥ is a [2r−1, r]-code, whence Ham(r, 2) is a [2r−1, 2r−1−r]-
code. Also, by definition, no two columns of H are linearly dependent but there are many
sets of 3 dependent columns; for example, (1 0 . . . , 0)T , (0, 1, 0, . . . , 0)T , (1, 1, 0, . . . , 0)T .
This gives the following:

n = 2r − 1, M = 2n−r, d = 3, e = 1.
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Hence, in Theorem 2.6 or Corollary 2.7,

M

{(

n

0

)

+

(

n

1

)

+ . . . +

(

n

e

)}

≤ 2n.

LHS = 2n−r(1 + n) = 2n−r . 2r = 2n = RHS.

So the code is perfect. �

Decoding with a binary Hamming code

C = Ham(r, 2) is a [2r − 1, 2r − 1 − r, 3]-code, with

V = V (n, 2), |V | = 2n, n = 2r − 1, |C| = 2n−r.

The number of cosets is |V |/|C| = 2n/2n−r = 2r. The coset leaders are n = 2r − 1 vectors of
weight 1 and one of weight zero. The syndrome of li = 0 . . . 0 1 0 . . . 0, where the 1 is in the
i-th place, is the i-th column of H .

I. If the received vector is y, calculate the syndrome yHT .

II. If yHT = 0, then y is a codeword.

III. If yHT 6= 0, then find the column of H containing yHT ; suppose it is the i-th column.

IV. The corrected vector is x = y + li, where li is a vector with 1 in the i-th place and 0
elsewhere; that is, change the i-th coordinate of y,

Example 8.4. Ham(3, 2) : r = 3, n = 7, k = 4, d = 3.

H =





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1





(i)
y = 0011111,

sH(y) = yHT = 011;

so the error is in the 3rd coordinate and

y + l3 = 0001111.

(ii)
y = 1100011,

sH(y) = 010;

so the error is in the 2nd coordinate, and

y + l2 = 1000011.
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Construction of Ham(r, q)

Given any non-zero vector in V (r, q), write x ∼ y if y = λx for some non-zero λ ∈ Fq. It
is immediate that this is equivalence relation. The equivalence classes are the 1-dimensional
supspaces are the 1-dimensional subspaces withpout the zero.

Consider the set of equivalence classes: write the set as PG(r − 1, q). Pick one vector
in each equivalence class. Note that

|PG(r − 1, q)| =
|V (r, q)| − 1

q − 1
.

The equivalence class of (x1, . . . , xr) is [x1, . . . , xr].

Projective space PG(r − 1, q) over a finite field Fq

Definition 8.5. The subspaces of PG(r− 1, q) are the subspaces other than {0} of V (r, q).

V (r, q) PG(r − 1, q) proj. dim
1-dimensional subspace point 0
2-dimensional subspace line 1
3-dimensional subspace plane 2
4-dimensional subspace solid 3
i-dimensional subspace projective (i − 1)-diml subspace i − 1

(r − 1)-dimensional subspace hyperplane r − 2

Theorem 8.6. The space PG(r − 1, q) contains

(i) (qr − 1)/(q − 1) points,

(ii)
(qr − 1)(qr−1 − 1)

(q2 − 1)(q − 1)
lines,

(iii) q + 1 points on a line,

(iv) (qr−1 − 1)/(q − 1) lines through a point.

Proof (i) This is the number of 1-dimensional subspaces in V (r, q).

(ii) This is the number of 2-dimensional subspaces in V (r, q).

(iii) This is the number of 1-dimensional subspaces in a 2-dimensional subspace in V (r, q).

(iv) This is the number of 2-dimensional subspaces through a 1-dimensional subspace in
V (r, q).

�

Corollary 8.7. (i) PG(2, q) contains

(a) q2 + q + 1 points and lines,

(b) q + 1 points on a line, lines through a point.
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(ii) (a) The points are (x, y, z) 6= (0, 0, 0) where (λx, λy, λz) = (x, y, z).

(b) The lines are uX + vY + wZ = {[x, y, z] | ux + vy + wz = 0}.

Example 8.8. q = 2.
The points are (x, y, z), x, y, z ∈ F2, not all zero.
The lines are uX + vY + wZ, u, v, w ∈ F2, not all zero.
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Example 8.9. |V (2, 5)| = 52, |PG(1, 5)| = (52 − 1)/(5 − 1) = 5 + 1 = 6

V (2, 5) \ {0} =

(1, 0), (2, 0), (3, 0), (4, 0)
(0, 1), (0, 2), (0, 3), (0, 4)
(1, 1), (2, 2), (3, 3), (4, 4)
(1, 2), (2, 4), (3, 1), (4, 3)
(1, 3), (2, 1), (3, 4), (4, 2)
(1, 4), (2, 3), (3, 2), (4, 1)

PG(1, 5) is the first column.

The construction of Ham(r, q)

Let H be an r×(qr−1)/(q−1) matrix whose columns give an element from each equivalence
class, that is, the distinct points in PG(r − 1, q) or equivalently one vector for each 1-
dimensional subspace of V (r, q).

Definition 8.10. Let Ham(r, q) be the linear q-ary code with parity-check matrix H .

Theorem 8.11. Ham(r, q) is a perfect
[

qr−1

q−1
, qr−1

q−1
− r, 3

]

-code.

Proof n = qr
−1

q−1
, k = qr

−1

q−1
− r by definition. Again, by definition and Theorem 9.18, d = 3.

M = qk = qn−r. In Theorem 5.6,

qn−r(1 + n(q − 1)) = qn−r

{

1 +
qr − 1

q − 1
(q − 1)

}

= qn−r(1 + qr − 1)

= qn−r . qr

= qn.

Hence the code is perfect. �

Note 8.12. 1. Different H give equivalent codes as they involve either a permutation of
columns or the multiplication by a non-zero scalar.
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2. To give a canonical H , choose the top non-zero element of each column as 1.

Lemma 8.13. (i) |PG(1, q)| = q + 1.

(ii) |PG(2, q)| = q2 + q + 1.

(iii) |PG(3, q)| = (q2 + 1)(q + 1).

Example 8.14. Ham(r, q) Fq = {t1, t2, . . . , tq}

(i) Ham(2, q), H =

[

0 1 1 . . . 1
1 t1 t2 . . . tq

]

.

(ii) Ham(3, q), H =





0 0 . . . 0 1 1 . . . 1 1 . . . 1 . . . 1 . . . 1
0 1 . . . 1 t1 t1 . . . t1 t2 . . . t2 . . . tq . . . tq
1 t1 . . . tq t1 t2 . . . tq t1 . . . tq . . . t1 . . . tq



.

Decoding with a q-ary Hamming code

C = Ham(r, q) is a
[

qr
−1

q−1
, qr

−1

q−1
− r, 3

]

−code. It is perfect single-error correcting. Hence

words of weight ≤ 1 form coset leaders.
The number of words of weight 0 is 1.
The number of words of weight 1 is (q − 1)n = qr − 1.

Hence the number of words of weight ≤ 1 is qr − 1 + 1 = qr. The number of cosets is
|V (n, q)|/|C| = qn/qk = qn/qn−r = qr.

I. If the received vector is y, calculate the syndrome yHT .

II. If yHT = 0, then take the correct message as y.

III. If yHT 6= 0, then yHT = (λcj)
T for some column cj of H and some λ of Fq \ {0}.

IV. The correct message is x = y − λej , where ej = (0 . . . 010 . . . 0) and the 1 is in the jth
place; that is, subtract λ from the j-th coordinate of y.

Example 8.15. Ham(2, 5)

H =

[

0 1 1 1 1 1
1 0 1 2 3 4

]

−→ rearrange the columns −→ H ′ =

[

1 1 1 1 1 0
1 2 3 4 0 1

]

.

Here n = 6, r = 2, k = n − r = 4, d = 3.

G =









1 0 0 0 −1 −1
0 1 0 0 −1 −2
0 0 1 0 −1 −3
0 0 0 1 −1 −4









=









1 0 0 0 4 4
0 1 0 0 4 3
0 0 1 0 4 2
0 0 0 1 4 1









.

Ham(2, 5) is a [6, 4, 3] code over F5; that is, it can send 625 messages.
(i) Decode y = 123123:

yH ′T =
[

1 2 3 1 2 3
]

[

1 1 1 1 1 0
1 2 3 4 0 1

]T

= (4 1) = 4(1 4);

x = y − 4e4 = 123223 = r1 + 2r2 + 3r3 + 2r4,
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where ri is the i-th row of G’.
(ii) Decode y′ = 111111:

y′H ′T = 01,

x = y − e6 = 111110 = r1 + r2 + r3 + r4.

If instead of H ′ we had used the equivalent but not the same parity-check matrix H ,

H =

[

0 1 1 1 1 1
1 0 1 2 3 4

]

→

[

0 1 1 1 1 1
1 2 3 4 0 1

]

→

[

4 4 3 2 1 0
1 2 3 4 0 1

]

G =









1 0 0 0 −4 −1
0 1 0 0 −4 −2
0 0 1 0 −3 −3
0 0 0 1 −2 −4









=









1 0 0 0 1 4
0 1 0 0 1 3
0 0 1 0 2 2
0 0 0 1 3 1









r1

r2

r3

r4

,

y = 123123 ⇒ s = 14 ⇒ x = 123122 = r1 + 2r2 + 3r3 + r4;

y′ = 111111 ⇒ s′ = 01 ⇒ x = 011111 = r2 + r3 + r4.

Definition 8.16. The dual of a Hamming code is a simplex code.

Theorem 8.17. The simplex code Ham(r, q)⊥ is a
[

qr
−1

q−1
, r, qr−1

]

code with every non-zero

codeword of weight qr−1.

Proof If H is a parity-check matrix of Ham(r, q) and so a generator matrix of Ham(r, q)⊥,
then, if x ∈ Ham(r, q)⊥ \ {0},

x =
∑

λihi,

where h1, . . . , hr are the rows of H and λ1, . . . , λr are not all zero. Now, if j-th column of
H is (x1 x2 · · · xr)

⊥, then the the j-th coordinate of x is 0 if
∑r

1
λixi = 0. As the columns

vary over all points of PG(r − 1, q), the number of 0’s in x is the number of points in a
hyperplane, namely (qr−1 − 1)/(q − 1). So

w(x) =
qr − 1

q − 1
−

qr−1 − 1

q − 1
= qr−1.

�

Example 8.18. C = Ham(3, 2) is a [7, 4, 3]2 code and so C⊥ is a [7, 3]2 code. A parity-check
matrix H for C is a generator matrix for C⊥. As in Example 8.4, let

H =





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1





h1

h2

h3

Then the elements of C⊥ are 0, h1, h2, h3, h1 + h2, h1 + h3, h2 + h3, h1 + h2 + h3; that is,

0000000, 0001111, 0110011, 1010101, 0111100, 1011010, 1100110, 1111000.

Every non-zero word of C⊥ has weight 4.
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