Chapter 8

Hamming Codes

To define the Hamming codes Ham(r, ¢) over F,, where

T

qg- —1
n = ,
q—1

r=n—*kforr=1,2,...,

a parity-check matrix H is specified. First, consider the case ¢ = 2.

Definition 8.1. For any positive integer r, let H be an r X n matrix, n = 2" — 1, whose
columns are the elements of V(r,2) \ {0}.

Example 8.2. (i) r=2,n=3k=1
011 110
[1 0 1}_>H_[1 0 1}
— G =[111] = Ham(2,2) = {000,111},

the binary repetition code of length 3.
(ii)) r=3,n="7 k=4

0001111 01 11100
60110011 —H=|10110T1F©O0
1010101 1101001

1000011
:>G:0100101

0010110

0001111

Hence Ham(3,2) is equivalent to the perfect [7,4, 3]s code.
Theorem 8.3. Ham(r,2) is a perfect 2" — 1,2" — 1 — r, 3]-code.

Proof By definition, Ham(r, 2)* is a [2"—1, r]-code, whence Ham(r, 2) is a [2"—1,2"—1—7]-
code. Also, by definition, no two columns of H are linearly dependent but there are many
sets of 3 dependent columns; for example, (10 ..., 0)7, (0, 1,0, ..., 0)%, (1, 1,0, ..., 0)T.
This gives the following:

n=2"—-1, M=2"" d=3, e=1.
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Hence, in Theorem 2.6 or Corollary 2.7,

() () () o+

LHS = 2"7(1 +n) = 2" .2" = 2" = RHS.
So the code is perfect. O
Decoding with a binary Hamming code
C =Ham(r,2) is a [2" — 1,2" — 1 — r, 3]-code, with
V=V0n?2), |V|=2", n=2"—1, |C|=2"".

The number of cosets is |V|/|C| = 2"/2"~" = 2". The coset leaders are n = 2" — 1 vectors of
weight 1 and one of weight zero. The syndrome of [; =0 ...010 ...0, where the 1 is in the
i-th place, is the i-th column of H.

I. If the received vector is y, calculate the syndrome yH?.
II. If yH” = 0, then y is a codeword.
III. If yHT # 0, then find the column of H containing yH?'; suppose it is the i-th column.

IV. The corrected vector is x = y + [;, where [; is a vector with 1 in the i-th place and 0
elsewhere; that is, change the ¢-th coordinate of v,

Example 8.4. Ham(3,2): r=3,n="7k=4,d=3.

0001111
H=|0110011
1010101

i
» y = 0011111,

su(y) =yH" = 011;
so the error is in the 3rd coordinate and

y + 13 = 0001111,

il
(i) y = 1100011,
su(y) = 010;
so the error is in the 2nd coordinate, and

y + lo = 1000011.
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Construction of Ham(r, q)

Given any non-zero vector in V(r,q), write z ~ y if y = Az for some non-zero A € F,. It
is immediate that this is equivalence relation. The equivalence classes are the 1-dimensional
supspaces are the 1-dimensional subspaces withpout the zero.

Consider the set of equivalence classes: write the set as PG(r — 1, ¢). Pick one vector
in each equivalence class. Note that

‘V(T, Q)‘ B 1

The equivalence class of (z1,...,x,) is [x1,...,z,].

Projective space PG(r —1,q) over a finite field F,
Definition 8.5. The subspaces of PG(r — 1, q) are the subspaces other than {0} of V (r, ¢q).

V(r,q) PG(r—1,q) proj. dim
1-dimensional subspace point 0
2-dimensional subspace line 1
3-dimensional subspace plane 2
4-dimensional subspace solid 3
i-dimensional subspace projective (i — 1)-diml subspace 1—1

(r — 1)-dimensional subspace hyperplane r—2

Theorem 8.6. The space PG(r — 1,q) contains
(i) (¢"—1)/(q —1) points,

(¢ =g —=1)
(> —=1)(g—1)

(i) ¢ + 1 points on a line,

lines,

(i)

(iv) (¢" ' —=1)/(q— 1) lines through a point.
Proof (i) This is the number of 1-dimensional subspaces in V (r, q).
(ii) This is the number of 2-dimensional subspaces in V (r, q).
(iii) This is the number of 1-dimensional subspaces in a 2-dimensional subspace in V(r, q).

(iv) This is the number of 2-dimensional subspaces through a 1-dimensional subspace in
V(r,q).

Corollary 8.7. (i) PG(2,q) contains

(a) ¢* + q + 1 points and lines,
(b) ¢+ 1 points on a line, lines through a point.
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(ii) (a) The points are (x,y,z) # (0,0,0) where (Ax, \y, Az) = (z,y, 2).
(b) The lines are uX +vY +wZ = {[x,y, 2] | uz + vy + wz = 0}.
Example 8.8. ¢ = 2.

The points are (z,y,2), z,y,z € Fy, not all zero.
The lines are uX +vY +wZ, wu,v,w € Fy, not all zero.

X+Y 1?
Y Y + 7
110 101
X+ 111
S X4V +Z

010 X 011 001
Example 8.9. |V (2,5)] = 5% |PG(1,5)|=(5*-1)/(5—-1)=5+1=6
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PG(1,5) is the first column.

The construction of Ham(r, q)

Let H be an r x (¢"—1)/(q—1) matrix whose columns give an element from each equivalence
class, that is, the distinct points in PG(r — 1,q) or equivalently one vector for each 1-
dimensional subspace of V(r, q).

Definition 8.10. Let Ham(r, ¢) be the linear g-ary code with parity-check matrix H.

Theorem 8.11. Ham(r, q) is a perfect [qqr_—_ll, qqu—ll -, 3} -code.

Proof n = %, k= % — 1 by definition. Again, by definition and Theorem 9.18, d = 3.

M = ¢* = ¢"". In Theorem 5.6,

T

reatg-1) = ¢ {1 Tl - )

q —_—
— qnfr(l + q?“ _ 1)
— qn—r qT
Hence the code is perfect. [l
Note 8.12. 1. Different H give equivalent codes as they involve either a permutation of

columns or the multiplication by a non-zero scalar.
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2. To give a canonical H, choose the top non-zero element of each column as 1.
Lemma 8.13. (i) |PG(1,q)|=q+ 1.
(i) |PG(2.0)l = ¢ +q+ 1.
(it}) |PG(3,0)| = (¢ + 1)(g +1).

Example 8.14. Ham(r, q) F,={ti.t2,...,t,}
. 01 1 ... 1
(i) Ham(2, q), H_[l toty .. tq}
010 o(r 1 ... 1)1 ... 1{|...
(11) Ham(?),q), H = 01 1 tl tl tl tQ t2 tq tq
1t |t to ottt

Decoding with a g-ary Hamming code

C = Ham(r,q) is a [%, % -, 3] —code. It is perfect single-error correcting. Hence
words of weight < 1 form coset leaders.
The number of words of weight 0 is 1.
The number of words of weight 1is (¢ — 1)n = ¢" —
1

1.
Hence the number of words of weight < 11is ¢" — 1+ 1 = ¢". The number of cosets is
V(n.g)l/ICl=q"/d"=q"/a" " =q".

I. If the received vector is y, calculate the syndrome yH7”.
II. If yHT = 0, then take the correct message as ¥.
L If yH' # 0, then yH” = (A¢;)” for some column ¢; of H and some A of F, \ {0}.

IV. The correct message is = y — Aej, where e; = (0...010...0) and the 1 is in the jth
place; that is, subtract A from the j-th coordinate of .

Example 8.15. Ham(2,5)

fo1 1111 , f1 11110
H = 1012 3 4 — rearrange the columns — H' = 12340 1
Here n=6,r=2,k=n—r=4,d=3.
1000 -1 —1 100 0 4 4
G_|01o00 -1 2 |o1004s3
0010 -1 -3 |0O01O042
0001 -1 —4 000141
Ham(2,5) is a [6,4, 3] code over Fs; that is, it can send 625 messages.
(i) Decode y = 123123:
H"=[12 31 2 3] bl T:(41):4(14)-
4 123401 ’

r =1y —4ey = 123223 =11 + 2ry + 3r3 + 21y,
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where r; is the i-th row of G’.
(ii) Decode 3/ = 111111:

y'H'" =01,
x:y_eﬁ:111110:r1+7a2+,’ﬂ3+7ﬂ4'

If instead of H' we had used the equivalent but not the same parity-check matrix H,

o 01111 1}_H {0 1111 1}_% {4 43210
1 012 3 4 1 23401 1 23401
1000 —4 —1 1000147 n
o= 0100 -4 2| _ 010013/
0010 —3 =3 00102 2| ry’
0001 —2 —4 00013 1| r

y = 123123 = s =14 = x = 123122 = 11 + 2r9 + 3rg + 1y;
y = 111111 = ' =01 = 2 = 011111 = ry + 73 + 14.

Definition 8.16. The dual of a Hamming code is a simplex code.

Theorem 8.17. The simplex code Ham(r, q)* is a [‘ITII,T, qr’l] code with every non-zero
q
r—1

codeword of weight q

Proof If H is a parity-check matrix of Ham(r, ¢) and so a generator matrix of Ham(r, ¢)*,
then, if z € Ham(r, ¢)* \ {0},

where hq,...,h, are the rows of H and A{,..., A\, are not all zero. Now, if j-th column of
H is (zy @9 -+ )T, then the the j-th coordinate of z is 0 if ] \jz; = 0. As the columns
vary over all points of PG(r — 1,¢), the number of 0’s in x is the number of points in a
hyperplane, namely (¢"~' —1)/(q — 1). So

qr_1 qrfl_l .
w(x):q_l— =) =q

O

Example 8.18. C' = Ham(3,2) is a [7, 4, 3], code and so C is a [7, 3], code. A parity-check
matrix H for C is a generator matrix for C*+. As in Example 8.4, let

0001111 hy
H=|101100T11 hs
1010101 hs

Then the elements of C* are 0, hy, ho, hs, hi + ha, b1 + hs, ho + hs, hy + ho + hg; that is,
0000000, 0001111, 0110011, 1010101, 0111100, 1011010, 1100110, 1111000.

Every non-zero word of C* has weight 4.
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