Chapter 8

Hamming Codes

To define the Hamming codes $\operatorname{Ham}(r,q)$ over \mathbf{F}_q , where

$$n = \frac{q^r - 1}{q - 1}$$
, $r = n - k$ for $r = 1, 2, ...$,

a parity-check matrix H is specified. First, consider the case q=2.

Definition 8.1. For any positive integer r, let H be an $r \times n$ matrix, $n = 2^r - 1$, whose columns are the elements of $V(r, 2) \setminus \{0\}$.

Example 8.2. (i) r = 2, n = 3, k = 1

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \longrightarrow H = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
$$\Longrightarrow G = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \Longrightarrow \operatorname{Ham}(2, 2) = \{000, 111\},$$

the binary repetition code of length 3.

(ii)
$$r = 3, n = 7, k = 4$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \longrightarrow H = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\Longrightarrow G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

Hence Ham(3,2) is equivalent to the perfect $[7,4,3]_2$ code.

Theorem 8.3. Ham(r, 2) is a perfect $[2^r - 1, 2^r - 1 - r, 3]$ -code.

Proof By definition, $\operatorname{Ham}(r,2)^{\perp}$ is a $[2^r-1,r]$ -code, whence $\operatorname{Ham}(r,2)$ is a $[2^r-1,2^r-1-r]$ -code. Also, by definition, no two columns of H are linearly dependent but there are many sets of 3 dependent columns; for example, $(1\ 0\ \ldots,\ 0)^T$, $(0,\ 1,\ 0,\ \ldots,\ 0)^T$, $(1,\ 1,\ 0,\ \ldots,\ 0)^T$. This gives the following:

$$n = 2^r - 1$$
, $M = 2^{n-r}$, $d = 3$, $e = 1$.

Hence, in Theorem 2.6 or Corollary 2.7,

$$M\left\{ \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{e} \right\} \le 2^n.$$

$$LHS = 2^{n-r}(1+n) = 2^{n-r} \cdot 2^r = 2^n = RHS.$$

So the code is perfect.

Decoding with a binary Hamming code

C = Ham(r, 2) is a $[2^r - 1, 2^r - 1 - r, 3]$ -code, with

$$V = V(n, 2), |V| = 2^n, n = 2^r - 1, |C| = 2^{n-r}.$$

The number of cosets is $|V|/|C| = 2^n/2^{n-r} = 2^r$. The coset leaders are $n = 2^r - 1$ vectors of weight 1 and one of weight zero. The syndrome of $l_i = 0 \dots 0 \, 1 \, 0 \dots 0$, where the 1 is in the *i*-th place, is the *i*-th column of H.

- I. If the received vector is y, calculate the syndrome yH^T .
- II. If $yH^T = 0$, then y is a codeword.
- III. If $yH^T \neq 0$, then find the column of H containing yH^T ; suppose it is the i-th column.
- IV. The corrected vector is $x = y + l_i$, where l_i is a vector with 1 in the *i*-th place and 0 elsewhere; that is, change the *i*-th coordinate of y,

Example 8.4. Ham(3, 2): r = 3, n = 7, k = 4, d = 3.

$$H = \left[\begin{array}{cccccccc} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array} \right]$$

(i)
$$y = 0011111,$$
 $s_H(y) = yH^T = 011;$

so the error is in the 3rd coordinate and

$$y + l_3 = 0001111.$$

(ii)
$$y = 1100011,$$

$$s_H(y) = 010;$$

so the error is in the 2nd coordinate, and

$$y + l_2 = 1000011.$$

Construction of Ham(r, q)

Given any non-zero vector in V(r,q), write $x \sim y$ if $y = \lambda x$ for some non-zero $\lambda \in \mathbf{F}_q$. It is immediate that this is equivalence relation. The equivalence classes are the 1-dimensional supspaces are the 1-dimensional subspaces withpout the zero.

Consider the set of equivalence classes: write the set as PG(r-1,q). Pick one vector in each equivalence class. Note that

$$|PG(r-1,q)| = \frac{|V(r,q)|-1}{q-1}.$$

The equivalence class of (x_1, \ldots, x_r) is $[x_1, \ldots, x_r]$.

Projective space PG(r-1,q) over a finite field \mathbf{F}_q

Definition 8.5. The subspaces of PG(r-1,q) are the subspaces other than $\{0\}$ of V(r,q).

V(r,q)	PG(r-1,q)	proj. dim
1-dimensional subspace	point	0
2-dimensional subspace	line	1
3-dimensional subspace	plane	2
4-dimensional subspace	solid	3
i-dimensional subspace	projective $(i-1)$ -diml subspace	i-1
(r-1)-dimensional subspace	hyperplane	r-2

Theorem 8.6. The space PG(r-1,q) contains

- (i) $(q^r 1)/(q 1)$ points,
- (ii) $\frac{(q^r-1)(q^{r-1}-1)}{(q^2-1)(q-1)}$ lines,
- (iii) q+1 points on a line,
- (iv) $(q^{r-1}-1)/(q-1)$ lines through a point.

Proof (i) This is the number of 1-dimensional subspaces in V(r,q).

- (ii) This is the number of 2-dimensional subspaces in V(r,q).
- (iii) This is the number of 1-dimensional subspaces in a 2-dimensional subspace in V(r,q).
- (iv) This is the number of 2-dimensional subspaces through a 1-dimensional subspace in V(r,q).

Corollary 8.7. (i) PG(2,q) contains

- (a) $q^2 + q + 1$ points and lines,
- (b) q+1 points on a line, lines through a point.

- (ii) (a) The points are $(x, y, z) \neq (0, 0, 0)$ where $(\lambda x, \lambda y, \lambda z) = (x, y, z)$.
 - (b) The lines are $uX + vY + wZ = \{[x, y, z] \mid ux + vy + wz = 0\}.$

Example 8.8. q = 2.

The points are (x, y, z), $x, y, z \in \mathbf{F}_2$, not all zero.

The lines are uX + vY + wZ, $u, v, w \in \mathbf{F}_2$, not all zero.

Example 8.9. $|V(2,5)| = 5^2$, $|PG(1,5)| = (5^2 - 1)/(5 - 1) = 5 + 1 = 6$

$$V(2,5) \setminus \{0\} = \begin{pmatrix} (1,0), & (2,0), & (3,0), & (4,0) \\ (0,1), & (0,2), & (0,3), & (0,4) \\ (1,1), & (2,2), & (3,3), & (4,4) \\ (1,2), & (2,4), & (3,1), & (4,3) \\ (1,3), & (2,1), & (3,4), & (4,2) \\ (1,4), & (2,3), & (3,2), & (4,1) \end{pmatrix}$$

PG(1,5) is the first column.

The construction of Ham(r, q)

Let H be an $r \times (q^r - 1)/(q - 1)$ matrix whose columns give an element from each equivalence class, that is, the distinct points in PG(r - 1, q) or equivalently one vector for each 1-dimensional subspace of V(r, q).

Definition 8.10. Let $\operatorname{Ham}(r,q)$ be the linear q-ary code with parity-check matrix H.

Theorem 8.11. Ham(r,q) is a perfect $\left[\frac{q^r-1}{q-1}, \frac{q^r-1}{q-1} - r, 3\right]$ -code.

Proof $n = \frac{q^r - 1}{q - 1}$, $k = \frac{q^r - 1}{q - 1} - r$ by definition. Again, by definition and Theorem 9.18, d = 3. $M = q^k = q^{n-r}$. In Theorem 5.6,

$$q^{n-r}(1+n(q-1)) = q^{n-r} \left\{ 1 + \frac{q^r - 1}{q-1}(q-1) \right\}$$

$$= q^{n-r}(1+q^r - 1)$$

$$= q^{n-r} \cdot q^r$$

$$= q^n.$$

Hence the code is perfect.

Note 8.12. 1. Different H give equivalent codes as they involve either a permutation of columns or the multiplication by a non-zero scalar.

2. To give a canonical H, choose the top non-zero element of each column as 1.

Lemma 8.13. (i) |PG(1,q)| = q + 1.

(ii) $|PG(2,q)| = q^2 + q + 1$.

(iii)
$$|PG(3,q)| = (q^2 + 1)(q + 1).$$

Example 8.14. Ham(r,q) $\mathbf{F}_q = \{t_1, t_2, \dots, t_q\}$

(i)
$$\operatorname{Ham}(2,q)$$
, $H = \begin{bmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & t_1 & t_2 & \dots & t_q \end{bmatrix}$.

(ii)
$$\operatorname{Ham}(3,q)$$
, $H = \begin{bmatrix} 0 & 0 & \dots & 0 & 1 & 1 & \dots & 1 & 1 & \dots & 1 & \dots & 1 \\ 0 & 1 & \dots & 1 & t_1 & t_1 & \dots & t_1 & t_2 & \dots & t_2 & \dots & t_q \\ 1 & t_1 & \dots & t_q & t_1 & t_2 & \dots & t_q & \dots & t_1 & \dots & t_q \end{bmatrix}$.

Decoding with a q-ary Hamming code

 $C = \operatorname{Ham}(r,q)$ is a $\left[\frac{q^r-1}{q-1}, \frac{q^r-1}{q-1} - r, 3\right]$ -code. It is perfect single-error correcting. Hence words of weight ≤ 1 form coset leaders.

The number of words of weight 0 is 1.

The number of words of weight 1 is $(q-1)n = q^r - 1$.

Hence the number of words of weight ≤ 1 is $q^r - 1 + 1 = q^r$. The number of cosets is $|V(n,q)|/|C| = q^n/q^k = q^n/q^{n-r} = q^r$.

- I. If the received vector is y, calculate the syndrome yH^T .
- II. If $yH^T = 0$, then take the correct message as y.
- III. If $yH^T \neq 0$, then $yH^T = (\lambda c_j)^T$ for some column c_j of H and some λ of $\mathbf{F}_q \setminus \{0\}$.
- IV. The correct message is $x = y \lambda e_j$, where $e_j = (0...010...0)$ and the 1 is in the jth place; that is, subtract λ from the j-th coordinate of y.

Example 8.15. Ham(2, 5)

$$H = \left[\begin{array}{ccccc} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 & 3 & 4 \end{array} \right] \longrightarrow \text{rearrange the columns} \longrightarrow H' = \left[\begin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 4 & 0 & 1 \end{array} \right].$$

Here n = 6, r = 2, k = n - r = 4, d = 3.

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & -1 \\ 0 & 1 & 0 & 0 & -1 & -2 \\ 0 & 0 & 1 & 0 & -1 & -3 \\ 0 & 0 & 0 & 1 & -1 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 4 & 4 \\ 0 & 1 & 0 & 0 & 4 & 3 \\ 0 & 0 & 1 & 0 & 4 & 2 \\ 0 & 0 & 0 & 1 & 4 & 1 \end{bmatrix}.$$

 $\operatorname{Ham}(2,5)$ is a [6,4,3] code over \mathbf{F}_5 ; that is, it can send 625 messages.

(i) Decode y = 123123:

$$yH'^T = \begin{bmatrix} 1 & 2 & 3 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 4 & 0 & 1 \end{bmatrix}^T = (41) = 4(14);$$

 $x = y - 4e_4 = 123223 = r_1 + 2r_2 + 3r_3 + 2r_4,$

where r_i is the *i*-th row of G'.

(ii) Decode y' = 1111111:

$$y'H'^T = 01,$$

 $x = y - e_6 = 1111110 = r_1 + r_2 + r_3 + r_4.$

If instead of H' we had used the **equivalent** but **not** the same parity-check matrix H,

$$H = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 & 3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 4 & 3 & 2 & 1 & 0 \\ 1 & 2 & 3 & 4 & 0 & 1 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & -4 & -1 \\ 0 & 1 & 0 & 0 & -4 & -2 \\ 0 & 0 & 1 & 0 & -3 & -3 \\ 0 & 0 & 0 & 1 & -2 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 4 \\ 0 & 1 & 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \end{bmatrix},$$

$$y = 123123 \Rightarrow s = 14 \Rightarrow x = 123122 = r_1 + 2r_2 + 3r_3 + r_4;$$

$$y' = 1111111 \Rightarrow s' = 01 \Rightarrow x = 0111111 = r_2 + r_3 + r_4.$$

Definition 8.16. The dual of a Hamming code is a *simplex* code.

Theorem 8.17. The simplex code $\operatorname{Ham}(r,q)^{\perp}$ is a $\left[\frac{q^r-1}{q-1},r,q^{r-1}\right]$ code with every non-zero codeword of weight q^{r-1} .

Proof If H is a parity-check matrix of $\operatorname{Ham}(r,q)$ and so a generator matrix of $\operatorname{Ham}(r,q)^{\perp}$, then, if $x \in \operatorname{Ham}(r,q)^{\perp} \setminus \{0\}$,

$$x = \sum \lambda_i h_i,$$

where h_1, \ldots, h_r are the rows of H and $\lambda_1, \ldots, \lambda_r$ are not all zero. Now, if j-th column of H is $(x_1 x_2 \cdots x_r)^{\perp}$, then the j-th coordinate of x is 0 if $\sum_{i=1}^{r} \lambda_i x_i = 0$. As the columns vary over all points of PG(r-1,q), the number of 0's in x is the number of points in a hyperplane, namely $(q^{r-1}-1)/(q-1)$. So

$$w(x) = \frac{q^{r} - 1}{q - 1} - \frac{q^{r-1} - 1}{q - 1} = q^{r-1}.$$

Example 8.18. C = Ham(3,2) is a $[7,4,3]_2$ code and so C^{\perp} is a $[7,3]_2$ code. A parity-check matrix H for C is a generator matrix for C^{\perp} . As in Example 8.4, let

$$H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \quad \begin{array}{c} h_1 \\ h_2 \\ h_3 \end{array}$$

Then the elements of C^{\perp} are $0, h_1, h_2, h_3, h_1 + h_2, h_1 + h_3, h_2 + h_3, h_1 + h_2 + h_3$; that is,

0000000, 0001111, 0110011, 1010101, 01111100, 1011010, 1100110, 11111000.

Every non-zero word of C^{\perp} has weight 4.