Chapter 7

The Dual Code and the Parity-Check
Matrix

Definition 7.1. Let z,y € V(n,q). Then
Ty =Ty + Tl + 0+ TpYp

is the scalar product of x and y.
If x-y =0, then x and y are orthogonal.

Note 7.2. The scalar product satisfies the following:
(i) (@+y) z=a-y+y-z
(i) (Az-y) = Az -y);
(ii) z-y=y-x.
Definition 7.3. Given an [n, k]-code C, the dual code C* is given by
Ct={reV(n,q |z -y=0, forally € C}.

Example 7.4. (i)
C = {0000,1001,0110,1111},

c+ = {0000,1001,0110,1111}.

C = {0000, 1000, 0100, 1100},
¢t = {0000,0010,0001,0011}.

Lemma 7.5. If C is an [n, k]-code with generator matriz G, then
(i) C* is a linear code;

(ii) C*+ ={zx € V(n,q) | xGT = 0}; that is, x is orthogonal to every row of G.
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Proof (i) If y,y/ € C*, then

x-y=x-y =0forallz e C
=z -(y+y)=0forall z € C,
x-(Ay)=0forall z € C.

(i)
2GT =0« a[r],... . r]]=0<=z-r/ =0foralli <= x-r; =0 for all 4,

where 71, ...,r; are the rows of G. O

Definition 7.6. A parity-check matriz H for an [n, k]-code C'is an (n — k) X n matrix which
is a generator matrix for C*.

Theorem 7.7. (i) If C is an [n, k]-code over F, then C* is an [n,n — k]-code over F,.
(i) If G = [I A], then a generator matriz for C* is H = [—AT I, _4].

Proof (i) By Lemma 7.5, C* is a linear code of length n over F,. If G is a generator matrix

for C, with rows ry,...,r; and columns cy,...,c,, then
A1

G=lcr,...,ch] =
Tk

Consider ¢ : V(n,q) — V (k, q) given by

r— Gt = 2T, ... r]]
= (x-ry,...,x- 1)

T T
= x160 + -+ a0,

Then
n = dim(ker ¢) + dim(im ¢). (7.1)
As rank G = k, considering im ¢ in terms of the columns of G, so dim(im ¢) = k. Hence,
from (7.1) dim(ker ) =n — k.
Aliter, let G = [I; A] be a generator matrix for C, then z € C+ & Gz = 0:

I
10 -« 0 ay - (o
01 0 Q21 - A2p—k
. Lk ;
0 o 1 ag e Ghak :
L xn .
T1+anTry + -+ a g, = 0,
Ty + a1 Tpyr + -+ Ao, = 0,
Tp+ apTr + -t appptn = 0.
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So any choice can be made for 1, ..., z,; then 1, ..., z; are determined. Hence C+ = ¢"~%.

Hence dim C*+ =n — k.
(i) G =[I4 A], H=[-A"1,], rank H=n —k. Then

—-A

GH' =] I A]{I
n—k

] =L(-A)+ AL _r=—-A+A=0.

So HG™ = 0; that is, the rows si,..., 5, of H are in C*. But rank H =n — k; so H is a
generator matrix for Ct. O

Example 7.8. Cy = {000,011, 101,110} is a [3, 2],-code

1 01
c=[V01] weny

Theorem 7.9. The following are equivalent conditions on H :
(i) H s a parity-check matriz for C;

(i) Hz" =0 for all v € C;

(iii) zHT =0 for all x € C.
Note 7.10. (i) rank G =k, rank H =n — k;

(ii) C is equally well-specified by G or H;

(iii) If G = [I}, A] then a suitable parity-check matrix is H = [—A”T I,,_4].
Theorem 7.11. If C is an [n, k],-code then (C*+)*+ = C.
Proof Ifz € C, thenz-y=0 forall y € C*+. So z € (C*)*. But

dim (CH)*t=n—(n—k)=k.

Hence C' C (C*H)*t. As dim C = dim (C*)*, so C = (C+)*. O
Definition 7.12. If H = [B, I,,_4] it is in standard form.
Example 7.13. C3 = {00000,01101, 10110, 11011} is a [5, 2]-code. Then, with

11100
- [10  aa
01 001

If @ = (21, 29,1 + X2, 21, 25) € Cs,

Ty + 2o +x3 = O,
T +xTy = 0,
To+T5 = O,

r = (x1,%9, 21 + T2, 71, X2).

Note that Cj is a [5, 3]-code.

32



Explanation for the term parity-check matriz If u = uy---ugvy - - - v,_, where the
message symbols are wuq - - - ug,

Hu' =0,
S
u
(i 2 o o er e o ey | Uf :
L Un—k
S
(B | Lx]| ™ | =0
U1
L Un—k
S
b1y ce bk 10 --- 0 :
bgl bgk 01 -0 U —0
: : : U1 -
b1 - bp—gr 0 0 --- 1 :
L Un—k

k
Zbijﬂj+vi:0, fore=1,...,n—k.
j=1

As b;; = —aj;, so the symbols v; are determined.

Syndrome Decoding

Definition 7.14. Let H be a parity-check matrix for the [n, k]-code C. Then for any y €
Vi(n,q), -
su(y) =yH" = (Hy")

is the syndrome of y, a vector of length n — k.
Lemma 7.15. (i) yH" =0 <=y € C;

(ii) x4+ C =y + C <= x and y have the same syndrome;

(iii) There exists a one to one correspondence between cosets and syndrome.
Proof (i) This is by definition.

i) 24 C=y+C<=ar—-yelC<+= (z—yH =0« zH" = yH".

(iii) This follows from (ii).
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Algorithm 7.16. [. Set up 1-1 correspondence between coset leaders and syndromes.
II. If y is a received vector, calculate the syndrome s = yH?”.
ITI. Find coset leader e associated to s.

IV. Correct y to y — e.
Now much less needs to be stored, namely just coset leaders and syndromes.
Example 7.17. C3 = {00000, 10110,01101, 11011} Single error-correcting [5, 2]-code.

1 111 0 0
-3 oo
0 110 0 1

coset leader 00000 | 10000 | 01000 | 00100 | 00010 | 00001 | 11000 | 10001
syndrome 000 110 101 100 010 001 011 111

If the received message appears in the last two cosets we need to ask for retransmission,
since the weight of the coset leader is 2.

(i) y = 11110, yHT = 101, e = 01000,

r=y—e=y+e=10110.

(ii) y = 01100, yHT = s = 001, e = 00001,

z=y+e=01101.

(i) y = 11100, yHT = 111, e = 10001,

ask for retransmission.

Theorem 7.18. Let C' be an [n, k|-code with parity-check matriz H. Then

d(C) =d =mind(z,y)
z#Y
if and only if some d columns of H are linearly dependent but every d—1 columns are linearly
independent.

Proof Let the columns of H be cy,...,¢,, that is, H = [¢1,...,¢,]. Then z € C, with
T =TT, if and only if HaT = 0; that is,

ric1 + -+ a0, =0.

Now, x has weight d — 1 <= 3j1,...,j4—1 € N such that z;,...,z;, , # 0 and all other
zj =0+ z;¢;, + - +x;,,¢,, =0. Hence there exists no word of weight d — 1 if and
only if every d — 1 columns are linearly independent.

Similarly z is a word of weight d if and only if there exists iy,...,i; € N such that
Tiys ..., 2, # 0 and all other z; = 0; this occurs if and only if z;,¢;, +-- -+ z;,¢;, = 0. Hence
there exists a word of weight d if and only some d columns are linearly dependent. 0
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Corollary 7.19. (Singleton bound) For an [n, k, d]-code,
d<n—k+1.

Proof As every d — 1 columns of H are linearly independent, rank (H) =n —k > d — 1.
O

Example 7.20. (i) Ternary [4,2]-code with parity-check matrix

1 2 01
pe[1201] aes

(ii) Binary [5,2]-code with parity-check matrix

11110
H=l01101]|, d=3
00111
(iii) Binary [8,4]-code with parity-check matrix
1 00010T11
01 000O0T1T171
B=1oo0101101] 714
0001111®0

Definition 7.21. An [n, k, d]-code over F, with d = n—k+1 is mazimum distance separable,
abbreviated MDS.
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