
Chapter 5

Linear Codes

The space is V (n, q) = ((Fq)
n, +,×). For x ∈ V (n, q), write

x = (x1, x2, . . . , xn) = x1x2 · · ·xn.

Definition 5.1. (i) A linear code is a subspace of V (n, q).

(ii) If dim C = k, then C is an

[n, k]-code or [n, k]q-code,

or, if d(C) = d, it is an
[n, k, d]-code or [n, k, d]q-code.

Note 5.2. A q-ary [n, k, d]-code is a q-ary (n, qk, d)-code.

Definition 5.3. The weight w(x) of x in V (n, q) is

w(x) = d(x, 0);

that is, w(x) is the number of non-zero elements in x.

Lemma 5.4. d(x, y) = w(x − y) for x, y ∈ V (n, q).

Proof x − y has non-zero entries in those coordinates where x and y differ. �

Theorem 5.5. For a linear code C,

d(C) = min
x 6=0

w(x).

Proof Show the two inequalities. First,

d(C) = min
x 6=y

d(x, y) = min
x 6=y

w(x − y) ≤ min
x 6=0

w(x).

Conversely, there exist y, z ∈ C such that

d(C) = d(y, z) = w(y − z) ≥ min
x 6=0

w(x),

since y − z ∈ C. �
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Example 5.6. The perfect (7, 16, 3)-code.
This is a binary [7, 4, 3]-code

C = {u, z, l1, . . . , l7, m1, . . . , m7}

based on PG(2, 2) and has d(C) = 3 since w(u) = 7, w(li) = 3, w(mi) = 4.

To specify a linear code of dimension k, only k basis vectors are required!

Definition 5.7. A generator matrix G of an [n, k]-code C is a k×n matrix whose rows form
a basis for C.

Example 5.8. From Example 4.1,

C1 = {00, 01, 10, 11}

is a binary [2, 2]-code with generator matrix

G =

[

0 1
1 0

]

or

[

1 0
0 1

]

or · · · .

Similarly,
C2 = {000, 011, 101, 110}

is a binary [3, 2]-code with generator matrix

G =

[

0 1 1
1 0 1

]

,

and
C3 = {00000, 01101, 10110, 11011}

is a binary [5, 2]-code with generator matrix

G =

[

0 1 1 0 1
1 1 0 1 1

]

Theorem 5.9. By definition, rank G = dim C.

Definition 5.10. Two linear codes C and C ′ in V (n, q) are equivalent if C ′ can be obtained
from C by one of the following operations:

(A) some permutation of the coordinates in every codeword;

(B) multiplying the coordinate in a fixed position by a non-zero scalar.

This can be also described as follows. If σ ∈ Sn and λ1, . . . , λn ∈ Fq \ {0},

(A) x1 x2 x3...xn−1 xn −→ x1σ x2σ · · · x(n−1)σ xnσ;

(B) x1 x2 x3 · · ·xn−1 xn −→ λ1x1 λ2x2 · · · λnxn.

The point about (A) and (B) is that they preserve the distance of any two codewords, and
the minimum distance of the code, as well as the dimension.
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Theorem 5.11. If f : C → C ′ is a transformation obtained by using (A) and (B), with
f(C) = C ′, then

(i) d(x, y) = d(f(x), f(y));

(ii) d(C) = d(C ′);

(iii) dim C = dim C ′.

Recall the row operations (R1), (R2), (R3). Now, what column operations do (A) and
(B) give? Let (C1), (C2), (C3) be the corresponding column operations.

(A) → (C2) ci ↔ cj;

(B) → (C1) ci → λci.

Theorem 5.12. Two k × n matrices G, G′ generate equivalent linear [n, k]-codes over Fq if
G′ can be obtained from G by a sequence of operations (R1), (R2), (R3), (C1), (C2).

Proof The (Ri) change the basis of a code; the (Cj) change G to G′ for an equivalent code.
�

Note 5.13. Column operations generally change the code!

Theorem 5.14. Let G be a generator matrix of an [n, k]-code. Then, by the elementary
operations, G can be transformed to standard form,

[Ik A],

where Ik is the k × k identity and A is k × (n − k).

Proof By row or column operations obtain a non-zero pivot g11. Then use row operations
to obtain gi1 = 0, i > 1.

G′ =

1 ∗ . . . ∗
0
0
. H

.

.

0

Use row or column operations on G′ to obtain h11 6= 0. Continue. Then use row operations
to get I, unless column operations are required. �

Example 5.15. (i) C is a binary [5, 3]-code

G =





1 0 0 0 0
1 1 0 1 0
1 1 1 0 1



 →





1 0 0 0 0
0 1 0 1 0
0 1 1 0 1



 →





1 0 0 0 0
0 1 0 1 0
0 0 1 1 1




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(ii) C is a binary [6, 4]-code

G =









1 1 1 0 1 1
0 1 0 0 1 1
1 0 1 1 0 1
0 1 1 1 0 1









→









1 1 1 0 1 1
0 1 0 0 1 1
0 1 0 1 1 0
0 1 1 1 0 1









→









1 1 1 0 1 1
0 1 0 0 1 1
0 0 0 1 0 1
0 0 1 1 1 0









→









1 1 1 0 1 1
0 1 0 0 1 1
0 0 1 1 1 0
0 0 0 1 0 1









→









1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 0 1









(iii) C is a ternary [6, 4]-code

G =









1 2 1 1 2 1
0 1 0 1 1 1
1 0 2 1 1 1
0 1 0 2 1 0









→









1 2 1 1 2 1
0 1 0 1 1 1
0 1 1 0 2 0
0 1 0 2 1 0









→









1 2 1 1 2 1
0 1 0 1 1 1
0 0 1 2 1 2
0 0 0 1 0 2









→









1 2 1 1 2 1
0 1 0 0 1 2
0 0 1 0 1 1
0 0 0 1 0 2









→









1 2 1 0 2 2
0 1 0 0 1 2
0 0 1 0 1 1
0 0 0 1 0 2









→









1 0 0 0 2 0
0 1 0 0 1 2
0 0 1 0 1 1
0 0 0 1 0 2









Corollary 5.16. If G1 = [Ik A1] and G2 = [Ik A2] are generator matrices of the same code
C, then A1 = A2.

Proof The first row of G2 must be a linear combination of the rows of G1, and hence is
the first row of G1. Similarly for the other rows of G2. �
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