Chapter 5

Linear Codes

The space is V(n, q) = ((F,)",+, x). For € V(n, q), write
T = (21,Ta,...,Ty) = T T Tp.
Definition 5.1. (i) A linear code is a subspace of V(n, q).
(ii) If dim C' =k, then C'is an
[n, k]-code or [n, k|,-code,

or, if d(C) = d, it is an
[n, k, d]-code or [n, k, d|,-code.

Note 5.2. A g-ary [n, k, d]-code is a g-ary (n, ¢*, d)-code.
Definition 5.3. The weight w(x) of x in V(n,q) is
w(z) = d(z,0);
that is, w(x) is the number of non-zero elements in x.
Lemma 5.4. d(z,y) = w(x —y) for x,y € V(n,q).
Proof = — y has non-zero entries in those coordinates where z and y differ.

Theorem 5.5. For a linear code C)|

d(C) = r:giglw(x)

Proof Show the two inequalities. First,

d(C) = mind(z, y) = mi —y) < mi .
(€) = mind(z,y) = minw(z —y) < minw(z)

Conversely, there exist y, z € C' such that

d(C) =d(y, 2) = w(y — 2) = minw(z),

x#0

since y — z € C.
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Example 5.6. The perfect (7,16, 3)-code.
This is a binary [7,4, 3]-code

C = {u,z,ll,...,l7,m1,...,m7}
based on PG(2,2) and has d(C) = 3 since w(u) =7, w(l;) =3, w(m;) = 4.
To specify a linear code of dimension k, only k basis vectors are required!

Definition 5.7. A generator matriz G of an [n, k]-code C'is a k x n matrix whose rows form
a basis for C.

Example 5.8. From Example 4.1,
¢y, =1{00,01,10,11}

is a binary [2,2]-code with generator matrix
01 10
G = [ 10 } or [ 01 } or

Cy = {000,011, 101, 110}

Similarly,

is a binary [3,2]-code with generator matrix
011
¢= { 10 1 } ’

C3 = {00000,01101, 10110, 11011}

and

is a binary [5,2]-code with generator matrix

Theorem 5.9. By definition, rank G = dim C'.

Definition 5.10. Two linear codes C' and C” in V' (n, q) are equivalent if C’ can be obtained
from C' by one of the following operations:

(A) some permutation of the coordinates in every codeword;
(B) multiplying the coordinate in a fixed position by a non-zero scalar.
This can be also described as follows. If 0 € S,, and Ay, ..., A\, € F,\ {0},
(A) @129 T3... 001 Ty — T15 T2 =+ T(n—1)0 Tno
(B) 1 @ox3- Tpq Ty — A1 AaZg -+ Ay

The point about (A) and (B) is that they preserve the distance of any two codewords, and
the minimum distance of the code, as well as the dimension.
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Theorem 5.11. If f : C — C' is a transformation obtained by using (A) and (B), with
f(C)=C", then

(1) d(z,y) = d(f(x), [ ());
(i) d(C) = d(C");
(ili) dim C = dim C".

Recall the row operations (R1), (R2), (R3). Now, what column operations do (A) and
(B) give? Let (C1), (C2), (C3) be the corresponding column operations.

(A) = (C2) ¢ < ¢
(B) — (C1) ¢; — Ac;.

Theorem 5.12. Two k x n matrices G,G" generate equivalent linear [n, k]-codes over F, if
G’ can be obtained from G by a sequence of operations (R1), (R2), (R3), (C1), (C2).

Proof The (Ri) change the basis of a code; the (Cj) change G to G’ for an equivalent code.
O

Note 5.13. Column operations generally change the code!

Theorem 5.14. Let G be a generator matriz of an [n,k]-code. Then, by the elementary
operations, G can be transformed to standard form,

[ Al
where Iy is the k X k identity and A is k x (n — k).
Proof By row or column operations obtain a non-zero pivot ¢;;. Then use row operations

to obtain g;; =0, 7> 1.
1)« . . . %

Use row or column operations on G’ to obtain h;; # 0. Continue. Then use row operations
to get I, unless column operations are required. [l

Example 5.15. (i) C' is a binary [5, 3]-code

10000 10000 10000
G=111010|—-]1]0101O0|—=(01010
11101 01 101 00111
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(ii) C' is a binary [6, 4]-code

1
— = — O
— - O
o O~ -
— O O
— — O O
— O O O
| I |
T
I 1T 1
— = O = o
— o O = O
DO —= - OO O -
—N o O — O O - O
N~ O —H OO
—N O OO H O OO
L ] L 1
T T
I 1T 1
— o o —H O
— o O O O
DO —= - OO - -
— O = = O - O
— o O = == O O
— O 4O H O OO
L ] L 1
| 1
O

(iii) C is a ternary [6,4]-code
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O

I, As] are generator matrices of the same code
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Proof The first row of G5 must be a linear combination of the rows of GG;, and hence is

O

the first row of (G;. Similarly for the other rows of Gs.
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