Chapter 5

Linear Codes

The space is $V(n,q) = ((\mathbf{F}_q)^n, +, \times)$. For $x \in V(n,q)$, write

$$x = (x_1, x_2, \dots, x_n) = x_1 x_2 \cdots x_n.$$

Definition 5.1. (i) A linear code is a subspace of V(n,q).

(ii) If dim C = k, then C is an

$$[n, k]$$
-code or $[n, k]_q$ -code,

or, if d(C) = d, it is an

$$[n, k, d]$$
-code or $[n, k, d]_q$ -code.

Note 5.2. A q-ary [n, k, d]-code is a q-ary (n, q^k, d) -code.

Definition 5.3. The weight w(x) of x in V(n,q) is

$$w(x) = d(x,0);$$

that is, w(x) is the number of non-zero elements in x.

Lemma 5.4. $d(x,y) = w(x-y) \text{ for } x,y \in V(n,q).$

Proof x - y has non-zero entries in those coordinates where x and y differ.

Theorem 5.5. For a linear code C,

$$d(C) = \min_{x \neq 0} w(x).$$

Proof Show the two inequalities. First,

$$d(C) = \min_{x \neq y} d(x,y) = \min_{x \neq y} w(x-y) \leq \min_{x \neq 0} w(x).$$

Conversely, there exist $y, z \in C$ such that

$$d(C) = d(y, z) = w(y - z) \ge \min_{x \ne 0} w(x),$$

since $y - z \in C$.

Example 5.6. The perfect (7, 16, 3)-code.

This is a binary [7, 4, 3]-code

$$C = \{u, z, l_1, \dots, l_7, m_1, \dots, m_7\}$$

based on PG(2,2) and has d(C) = 3 since w(u) = 7, $w(l_i) = 3$, $w(m_i) = 4$.

To specify a linear code of dimension k, only k basis vectors are required!

Definition 5.7. A generator matrix G of an [n, k]-code C is a $k \times n$ matrix whose rows form a basis for C.

Example 5.8. From Example 4.1,

$$C_1 = \{00, 01, 10, 11\}$$

is a binary [2, 2]-code with generator matrix

$$G = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 or $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ or \cdots .

Similarly,

$$C_2 = \{000, 011, 101, 110\}$$

is a binary [3, 2]-code with generator matrix

$$G = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right],$$

and

$$C_3 = \{00000, 01101, 10110, 11011\}$$

is a binary [5, 2]-code with generator matrix

$$G = \left[\begin{array}{cccc} 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{array} \right]$$

Theorem 5.9. By definition, rank $G = \dim C$.

Definition 5.10. Two linear codes C and C' in V(n,q) are equivalent if C' can be obtained from C by one of the following operations:

- (A) some permutation of the coordinates in every codeword;
- (B) multiplying the coordinate in a fixed position by a non-zero scalar.

This can be also described as follows. If $\sigma \in S_n$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{F}_q \setminus \{0\}$,

- (A) $x_1 x_2 x_3...x_{n-1} x_n \longrightarrow x_{1\sigma} x_{2\sigma} \cdots x_{(n-1)\sigma} x_{n\sigma}$;
- (B) $x_1 x_2 x_3 \cdots x_{n-1} x_n \longrightarrow \lambda_1 x_1 \lambda_2 x_2 \cdots \lambda_n x_n$.

The point about (A) and (B) is that they preserve the distance of any two codewords, and the minimum distance of the code, as well as the dimension.

Theorem 5.11. If $f: C \to C'$ is a transformation obtained by using (A) and (B), with f(C) = C', then

- (i) d(x,y) = d(f(x), f(y));
- (ii) d(C) = d(C');
- (iii) dim $C = \dim C'$.

Recall the row operations (R1), (R2), (R3). Now, what column operations do (A) and (B) give? Let (C1), (C2), (C3) be the corresponding column operations.

- (A) \rightarrow (C2) $c_i \leftrightarrow c_j$;
- (B) \rightarrow (C1) $c_i \rightarrow \lambda c_i$.

Theorem 5.12. Two $k \times n$ matrices G, G' generate equivalent linear [n, k]-codes over \mathbf{F}_q if G' can be obtained from G by a sequence of operations (R1), (R2), (R3), (C1), (C2).

Proof The (Ri) change the basis of a code; the (Cj) change G to G' for an equivalent code.

Note 5.13. Column operations generally change the code!

Theorem 5.14. Let G be a generator matrix of an [n, k]-code. Then, by the elementary operations, G can be transformed to standard form,

$$[I_k \quad A],$$

where I_k is the $k \times k$ identity and A is $k \times (n-k)$.

Proof By row or column operations obtain a non-zero pivot g_{11} . Then use row operations to obtain $g_{i1} = 0$, i > 1.

$$G' = \begin{array}{c|cccc} & 1 & * & . & . & . & * \\ \hline & 0 & & & & \\ & 0 & & & & \\ & & . & & & \\ & & . & & \\ & & . & & \\ & & 0 & & & \\ \end{array}$$

Use row or column operations on G' to obtain $h_{11} \neq 0$. Continue. Then use row operations to get I, unless column operations are required.

Example 5.15. (i) C is a binary [5,3]-code

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

24

(ii) C is a binary [6, 4]-code

$$G = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

(iii) C is a ternary [6, 4]-code

$$G = \begin{bmatrix} 1 & 2 & 1 & 1 & 2 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 1 & 1 & 1 \\ 0 & 1 & 0 & 2 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 1 & 2 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 2 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 1 & 2 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 2 & 1 & 2 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 2 & 1 & 1 & 2 & 1 \\ 0 & 1 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 2 \end{bmatrix}$$

Corollary 5.16. If $G_1 = [I_k A_1]$ and $G_2 = [I_k A_2]$ are generator matrices of the same code C, then $A_1 = A_2$.

Proof The first row of G_2 must be a linear combination of the rows of G_1 , and hence is the first row of G_1 . Similarly for the other rows of G_2 .