Chapter 3

Finite Fields

3.1 Construction
Definition 3.1. A field I is a set closed under two operations +, x such that

(i) (F,4+) is an abelian group with identity 0;
(ii) (F\{0}, x) is an abelian group with identity 1;
(iii) For all z,y,z € F,

x(y+z2)=xy+axz, (x+y)z=u1x2z+yz

Example 3.2. Examples of fields:

R = the real numbers;

Q = the rational numbers;

C = the complex numbers;

Z,=7F, = the integers modulo the prime p.

Lemma 3.3. (i) A field has no zero divisors.
(ii) If the positive integer n is composite, Z, is not a field.

Proof (i) If mymy = 0 with my, my # 0, then my mimsy = 0 and so my = 0, a contradiction.
(ii) Suppose n = mymy with m; > 1,m; > 1. Then, in Z,, it follows that m;ms = 0,
again a contradiction by (i). O

Lemma 3.4. If p is a prime, then Z, is a field.
Proof If 1 <n <p, then n # 0 in Z,. So there exist a,b € Z such that
an +bp = 1.
In Z,, it follows that an =1 and n™! = a. O
Example 3.5. (i) Zs, Z3, Z5,Z; are fields;
(ii) Zy4, Zg are not fields.
InZy,2x2=4=0.In%Z¢,2x3=6=0.
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Definition 3.6. In any field F', the smallest positive integer p such that

l+14--+1=0
—_——

p

is the characteristic.
If there is no such integer, then F' has characteristic zero.

Lemma 3.7. In a finite field F,
(i) the characteristic p is a prime;
(ii) F is a vector space over F,.

Proof (i) If p = pipe with 1 < p; < p, then py;ps 1 = 0, whence ps 1 = 0, a contradiction.
(i) This follows from the axioms of a vector space. O

Theorem 3.8. If a finite field F' has |F| = q, then q = p" with p a prime and h € N.

Proof Let {ai,...,a,} be a basis for F' over F,. Then, if + € F, there exist unique
t1,...,t, € F) such that
xr = thél + théQ + - F thOéh.

As there are p choices for each t;, so |F| = p". O

Theorem 3.9. Any two fields of the same order q are isomorphic; that is, if F1, Fy are fields
with |Fy| = |Fy| = q, then there exists a bijection

0 : Fl — F2
with 0(x +y) = 0(x) + 0(y), O(xy) = 0(x)b(y) for all x,y € F.
Notation 3.10. If |F| = ¢, write ' =F, or F' = GF(q); here GF stands for Galois field.

Definition 3.11. A ring (= commutative ring with 1) is a set with two operations +, x
satisfying all the axioms of a field except perhaps the existence of a multiplicative inverse
for all non-zero elements.

Example 3.12. (i) Z, the integers;

(i) FIX] = {ap+a X+ +a,X"|a; € F;ne NU{0}}

= ring of polynomials over F' in the indeterminate X.

Definition 3.13. The polynomial f(X) in F'[X] is irreducibleif f = fi fo with f1, fo € F[X]
implies that either f; or fy is a constant.

Example 3.14. The polynomial X2 + 1 is irreducible over R but reducible over C.

Lemma 3.15 (Remainder Theorem). Ouver a field F, the linear polynomial X — « divides
F(X) if and only if f(a) = 0.
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Proof First,
f(X)=(X-a)g(X)+R

with R € F. Put X = «; then R = f(«). So R =0 if and only if f(«) = 0. O

Example 3.16. (i) If ' = Fy, then X? + 1 is reducible but X* + X + 1 is irreducible,
since 1 is a zero of the first but 0,1 are not zeros of the second.

(i) If F = F3, then X% — X + 1 is reducible but X? — X — 1 is irreducible, since —1 is a
zero of the first but 0,1, —1 are not zeros of the second.

(iii) If F' = F3, then X%+ X — 1 is reducible but X2 — X +1 is irreducible, since 2 is a zero
of the first but 0,1, —1, 2, —2 are not zeros of the second.

Example 3.17. Construction of a field of order p?
First,
C=R[X]/(X*+1)={z+yi|z,yeR;i*+1=0}.

Similarly, let X? — bX — ¢ be irreducible over F,. Write
a?—ba—c=0.
Then

F. = GF(p?) = F,[X]/(X*—bX —¢)
= {ap+aja|a; € Fp; o® =ba+c}

Example 3.18. (i) To construct Fy, take X? + X + 1, which is irreducible over Fy, and
let w? +w +1=0. Then

F,={a+bw]|abeFy}={0,1w1+w=w’}

(i) To construct Fy, take X? — X — 1, which is irreducible over F3 = {0,1, —1 = 2}, and
let 72 —7 — 1= 0. Then

Fo={a+br|abecFs > =7+1}={0,+1,+£7r, £1£7}.
Alternatively, take X2 + 1, which is also irreducible over F3 and let > +1 = 0. Then
Fo={a+b|abeFs > =—1}={0,41,4¢,£1 £}
Example 3.19. Construction of F, with ¢ = p"
Let f(X)=X"—b, 1 X" '~ =0 X — by and let f(a) =0, where f € F,[X] and
irreducible. Then
F,={ay+aa+---+a, 10" a; € Fp; f(a) =0}
is a field of order g = p".
Theorem 3.20. Let ¢ = p". The field F, has the following properties.

(i) (x4 y)P =a? +y? forallz,y € F,.
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(ii) t9=t for allt € F,,.
(iii) There exists o € F, such that
F,={0,1,a,...,07% | o' = 1}.

(iv) Under multiplication, F,\ {0} is a cyclic group of order ¢ — 1 :
F,~7Z, ..

(v) Under addition,

(vi) If Fy, Fy are finite fields such that Fy C Fy, then |Fy| divides |Fy|.
(vil) The automorphism group of F, is
Aut(F,) = {1, ¢0,...,0" 1} 27,
where p(z) = P, i(x) =z

Definition 3.21. If «v is as in Theorem 3.20 (iii), it is primitive. The irreducible polynomial
over F, that « satisfies is also primitive.

Note 3.22. A primitive element in F, has order ¢ — 1, where the order of z is the smallest
positive integer n such that 2 = 1. The order n divides ¢ — 1 for any =z € F,, \ {0}.

Corollary 3.23.
[[t=-1

where the product is taken over allt € F,\ {0}.

3.2 Irreducible polynomials

Theorem 3.24. X*" — X is the product of all monic irreducible f in F,[X] such that deg f
divides n.

Let N4 be the number of polynomials over F,, which are monic and irreducible of degree
d.

Corollary 3.25. p" =Y dN,.
din

Definition 3.26 (The Mobius function). If the integer m = pi* - - - pi*, then

1 ifT1:T2:...:Tk:O,
pu(m) = 0 ifr; > 1 for some i,
(=) ifry=ro=---=r, =1

If f is a function N — Z such that

o) = 3 1),
din

then

fm) =Y n (%) 9l
dln
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1 n
Corollary 3.27. N, = — (—) d.
oro ary n Z ILL d p

din
Proof Put g(n) =p", f(n)=nN,. O

Corollary 3.28. If N(n,q) is the number of irreducible monic polynomials of degree n over

F,, then
1 n
N(n,q) = - (—) a
(n,q) ndZu 7)1

Corollary 3.29. N(n,q) > 0.

Proof
1

n

N(n,q) >

S|
N
<
s
|
[
L
i
~__
V
o

(@ " q) =

O

Hence F,n can be constructed from an irreducible polynomial of degree h and such a poly-
nomial always divides X P X,

Example 3.30. Construct Fg over Fy

X34+ X = X(X"+1)
= XX +DX°+ X+ X'+ X+ X*+ X +1)
XX+D)(XP+ X2+ 1)(XP+ X +1).

Using X? + X2+ 1, let € +¢2+1=0. Then
Fs ={0,1,6,6% ¢ €', e, 8 | e =1},
Note that € + ¢ +1 =0, € + ¢+ 1 = 0. Hence, for example,

e+ =e(l+é) =ce =eh

et =E1+)=f = =e

3.3 Applications
3.3.1 Old ISBN numbers, also known as ISBN-10

Example 3.31. Fy;

x 1 234 5 6 7 8 9 10
1 643 9 2 8 7 5 10
T 1 234 5 -5 -4 -3 -2 -1
r*1 -5 43 -2 2 -3 -4 5 -1
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Example 3.32. Examples of old International Standard Book Numbers

0—19 — 853537 -6
0—19 — 850295 — 8

Here, 0 indicates the language, namely English; 19 is the publisher, Oxford University Press;
850295 is the book number; and 8 is the check digit.

Definition 3.33.
T1T2 "+ T10

is an old ISBN number if
(i) each of the first nine digits is in {0,1,...,9};

Y

(ii) the last digit may also be X;
(i)
10
> iz =0
i=1
in Fll'

For example,

z 019 8 5 3 5 9 2 9
¢ 123 4 5 6 7 8 9 10
w; 0025 -1 3 -4 2 -5 -4 2 = 14-14 =0

Theorem 3.34. (i) An old ISBN number x x5 - - - x19 has

9

10 = E ZI’Z m F11.

i=1

(ii) The old ISBN code detects (a) a single error or (b) a double error created by inter-
changing two digits.

(iii) The old ISBN code corrects an error in a given place.

Proof (i) In Fy;, 10 =—1. So

10
1

9

9
ZZZEZ + 10[[’10 = ZZI'Z — X10-
1

1

9
Hence z19 = ) i;.

1
(ii) If y; = z; + t is received for x; with ¢ # 0, but y; = z; for i # j, then

D iy = imi+tj=1tj#0

in FH .
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(iii) If the number is xyxq -+ -2 -+ - x19 with z in the j-th place, then

jr+ ) iz =0,

i#]

r=—j"! szl

i#]

3.3.2 New ISBN numbers, also known as ISBN-13
Example 3.35. Examples of new International Standard Book Numbers:

978 — 0 — 691 — 09679 — 7
978 — 0 — 8218 — 4306 — 2

In the first of these, 978 is always present; 0 indicates the language, namely English; 691
is the publisher Princeton University Press; 09679 is the book number; and 7 is the check
digit. In the second, 8218 is the American Mathematical Society.

Definition 3.36.
X1X2 -+ T13

is a new ISBN number if
(i) each digit is in {0,1,...,9};
(iii)
x1+3x2+x3+3x4+~-~+x11+3x12+x13 =0

in ZlO'

For example,

xz 9 7806 9109 67 97
¢ 1 3131 3131 31 31
gr; 9 21 8 06 271 0 9 18 7 27 7
=9 1806 7109 87 77T =170

Theorem 3.37. (i) A new ISBN number x5 - - - x13 has

12

T3 = — E vy 2o,

i=1
where ¢; =1 for 1 odd and c; = 3 for i even.

(ii) The new ISBN code corrects an error in a given place.

17



3.3.3 The Codabar system

Example 3.38. 4929 5316 9048 9053 is a valid 16-digit credit card number:
4929 is Barclaycard; the next 11 digits form the identifying number; the last digit is a
check digit.

Definition 3.39. In general,
T = T1T2 - T15T16

is a codabar number if, with ¢ = 2121212121212121,
c-x+t=0 (mod 10)
where t is the number of x; in odd positions ¢ with xz; > 5.

In the example, ¢t = 4 as only positions 5,9, 13, 15 fulfil this condition. Hence,

o
O DN W~
O = O
=N N
O = O
S DN Ot

1
2
2

W = w
S N
0 N ©
o= o
00 N
00 = 00
0 N ©
oo
=N
W = w
I

=

LiCi
Now, 76 +4 =80 =0 (mod 10).

Note 3.40. As in Theorem 3.34, the codabar system corrects an error in a given place.
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