
Chapter 3

Finite Fields

3.1 Construction

Definition 3.1. A field F is a set closed under two operations +, × such that

(i) (F, +) is an abelian group with identity 0;

(ii) (F\{0},×) is an abelian group with identity 1;

(iii) For all x, y, z ∈ F ,

x(y + z) = xy + xz, (x + y)z = xz + yz.

Example 3.2. Examples of fields:

R = the real numbers;
Q = the rational numbers;
C = the complex numbers;
Zp = Fp = the integers modulo the prime p.

Lemma 3.3. (i) A field has no zero divisors.

(ii) If the positive integer n is composite, Zn is not a field.

Proof (i) If m1m2 = 0 with m1, m2 6= 0, then m−1

1
m1m2 = 0 and so m2 = 0, a contradiction.

(ii) Suppose n = m1m2 with m1 > 1, m1 > 1. Then, in Zn, it follows that m1m2 = 0,
again a contradiction by (i). �

Lemma 3.4. If p is a prime, then Zp is a field.

Proof If 1 ≤ n < p, then n 6= 0 in Zp. So there exist a, b ∈ Z such that

an + bp = 1.

In Zp, it follows that an = 1 and n−1 = a. �

Example 3.5. (i) Z2, Z3, Z5,Z7 are fields;

(ii) Z4, Z6 are not fields.

In Z4, 2 × 2 = 4 = 0. In Z6, 2 × 3 = 6 = 0.
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Definition 3.6. In any field F , the smallest positive integer p such that

1 + 1 + · · · + 1
︸ ︷︷ ︸

p

= 0

is the characteristic.
If there is no such integer, then F has characteristic zero.

Lemma 3.7. In a finite field F ,

(i) the characteristic p is a prime;

(ii) F is a vector space over Fp.

Proof (i) If p = p1p2 with 1 < pi < p, then p1p2 1 = 0, whence p2 1 = 0, a contradiction.
(ii) This follows from the axioms of a vector space. �

Theorem 3.8. If a finite field F has |F | = q, then q = ph with p a prime and h ∈ N.

Proof Let {α1, . . . , αh} be a basis for F over Fp. Then, if x ∈ F, there exist unique
t1, . . . , th ∈ Fp such that

x = t1α1 + t2α2 + · · · + thαh.

As there are p choices for each ti, so |F | = ph. �

Theorem 3.9. Any two fields of the same order q are isomorphic; that is, if F1, F2 are fields

with |F1| = |F2| = q, then there exists a bijection

θ : F1 → F2

with θ(x + y) = θ(x) + θ(y), θ(x y) = θ(x) θ(y) for all x, y ∈ F1.

Notation 3.10. If |F | = q, write F = Fq or F = GF(q); here GF stands for Galois field.

Definition 3.11. A ring (= commutative ring with 1) is a set with two operations +,×
satisfying all the axioms of a field except perhaps the existence of a multiplicative inverse
for all non-zero elements.

Example 3.12. (i) Z, the integers;

(ii) F [X] = {a0 + a1 X + · · ·+ an Xn | ai ∈ F ; n ∈ N ∪ {0}}

= ring of polynomials over F in the indeterminate X.

Definition 3.13. The polynomial f(X) in F [X] is irreducible if f = f1 f2 with f1, f2 ∈ F [X]
implies that either f1 or f2 is a constant.

Example 3.14. The polynomial X2 + 1 is irreducible over R but reducible over C.

Lemma 3.15 (Remainder Theorem). Over a field F, the linear polynomial X − α divides

f(X) if and only if f(α) = 0.
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Proof First,
f(X) = (X − α)g(X) + R

with R ∈ F . Put X = α; then R = f(α). So R = 0 if and only if f(α) = 0. �

Example 3.16. (i) If F = F2, then X2 + 1 is reducible but X2 + X + 1 is irreducible,
since 1 is a zero of the first but 0, 1 are not zeros of the second.

(ii) If F = F3, then X2 − X + 1 is reducible but X2 − X − 1 is irreducible, since −1 is a
zero of the first but 0, 1,−1 are not zeros of the second.

(iii) If F = F5, then X2 +X −1 is reducible but X2 −X +1 is irreducible, since 2 is a zero
of the first but 0, 1,−1, 2,−2 are not zeros of the second.

Example 3.17. Construction of a field of order p2

First,
C = R[X]/(X2 + 1) = {x + y i | x, y ∈ R; i2 + 1 = 0}.

Similarly, let X2 − bX − c be irreducible over Fp. Write

α2 − bα − c = 0.

Then

Fp2 = GF(p2) = Fp[X]/(X2 − bX − c)

= {a0 + a1α | ai ∈ Fp; α2 = bα + c}

Example 3.18. (i) To construct F4, take X2 + X + 1, which is irreducible over F2, and
let ω2 + ω + 1 = 0. Then

F4 = {a + bω | a, b ∈ F2} = {0, 1, ω, 1 + ω = ω2}.

(ii) To construct F9, take X2 − X − 1, which is irreducible over F3 = {0, 1,−1 = 2}, and
let τ 2 − τ − 1 = 0. Then

F9 = {a + bτ | a, b ∈ F3; τ 2 = τ + 1} = {0,±1,±τ,±1 ± τ}.

Alternatively, take X2 + 1, which is also irreducible over F3 and let ι2 + 1 = 0. Then

F9 = {a + bι | a, b ∈ F3; ι2 = −1} = {0,±1,±ι,±1 ± ι}.

Example 3.19. Construction of Fq with q = ph

Let f(X) = Xh − bh−1X
h−1 − · · · − b1X − b0 and let f(α) = 0, where f ∈ Fp[X] and

irreducible. Then

Fq = {a0 + a1α + · · ·+ ah−1α
h−1 | ai ∈ Fp; f(α) = 0}

is a field of order q = ph.

Theorem 3.20. Let q = ph. The field Fq has the following properties.

(i) (x + y)p = xp + yp for all x, y ∈ Fq.
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(ii) tq = t for all t ∈ Fq.

(iii) There exists α ∈ Fq such that

Fq = {0, 1, α, . . . , αq−2 | αq−1 = 1}.

(iv) Under multiplication, Fq \ {0} is a cyclic group of order q − 1 :

Fq
∼= Zq−1.

(v) Under addition,
Fq

∼= Zp × · · · × Zp
︸ ︷︷ ︸

h

.

(vi) If F1, F2 are finite fields such that F1 ⊂ F2, then |F1| divides |F2|.

(vii) The automorphism group of Fq is

Aut(Fq) = {1, ϕ, . . . , ϕh−1} ∼= Zh,

where ϕ(x) = xp, ϕi(x) = xpi

.

Definition 3.21. If α is as in Theorem 3.20 (iii), it is primitive. The irreducible polynomial
over Fp that α satisfies is also primitive.

Note 3.22. A primitive element in Fq has order q − 1, where the order of x is the smallest
positive integer n such that xn = 1. The order n divides q − 1 for any x ∈ Fq \ {0}.

Corollary 3.23.
∏

t = −1,

where the product is taken over all t ∈ Fq \ {0}.

3.2 Irreducible polynomials

Theorem 3.24. Xpn

−X is the product of all monic irreducible f in Fp[X] such that deg f
divides n.

Let Nd be the number of polynomials over Fp which are monic and irreducible of degree
d.

Corollary 3.25. pn =
∑

d|n

dNd.

Definition 3.26 (The Möbius function). If the integer m = pr1

1
· · ·prk

k , then

µ(m) =







1 if r1 = r2 = ... = rk = 0,
0 if ri > 1 for some i,

(−1)k if r1 = r2 = · · · = rk = 1.

If f is a function N → Z such that

g(n) =
∑

d|n

f(d),

then
f(n) =

∑

d|n

µ
(n

d

)

g(d).
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Corollary 3.27. Nn =
1

n

∑

d|n

µ
(n

d

)

pd.

Proof Put g(n) = pn, f(n) = nNn. �

Corollary 3.28. If N(n, q) is the number of irreducible monic polynomials of degree n over

Fq, then

N(n, q) =
1

n

∑

d|n

µ
(n

d

)

qd.

Corollary 3.29. N(n, q) > 0.

Proof

N(n, q) >
1

n
(qn − qn−1... − q) =

1

n

(

qn −
qn − q

q − 1

)

> 0.

�

Hence Fph can be constructed from an irreducible polynomial of degree h and such a poly-

nomial always divides Xph

− X.

Example 3.30. Construct F8 over F2

X8 + X = X(X7 + 1)

= X(X + 1)(X6 + X5 + X4 + X3 + X2 + X + 1)

= X(X + 1)(X3 + X2 + 1)(X3 + X + 1).

Using X3 + X2 + 1, let ǫ3 + ǫ2 + 1 = 0. Then

F8 = {0, 1, ǫ, ǫ2, ǫ3, ǫ4, ǫ5, ǫ6 | ǫ7 = 1}.

Note that ǫ6 + ǫ4 + 1 = 0, ǫ5 + ǫ + 1 = 0. Hence, for example,

ǫ + ǫ3 = ǫ(1 + ǫ2) = ǫ.ǫ3 = ǫ4;

ǫ2 + ǫ6 = ǫ2(1 + ǫ4) = ǫ2.ǫ6 = ǫ8 = ǫ.

3.3 Applications

3.3.1 Old ISBN numbers, also known as ISBN-10

Example 3.31. F11

x 1 2 3 4 5 6 7 8 9 10
x−1 1 6 4 3 9 2 8 7 5 10
x 1 2 3 4 5 −5 −4 −3 −2 −1
x−1 1 −5 4 3 −2 2 −3 −4 5 −1
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Example 3.32. Examples of old International Standard Book Numbers

0 − 19 − 853537 − 6

0 − 19 − 850295 − 8

Here, 0 indicates the language, namely English; 19 is the publisher, Oxford University Press;
850295 is the book number; and 8 is the check digit.

Definition 3.33.

x1x2 · · ·x10

is an old ISBN number if

(i) each of the first nine digits is in {0,1,. . . ,9};

(ii) the last digit may also be X;

(iii)
10∑

i=1

ixi = 0

in F11.

For example,

xi 0 1 9 8 5 3 5 9 2 9
i 1 2 3 4 5 6 7 8 9 10

ixi 0 2 5 −1 3 −4 2 −5 −4 2 = 14 − 14 = 0

Theorem 3.34. (i) An old ISBN number x1x2 · · ·x10 has

x10 =
9∑

i=1

ixi in F11.

(ii) The old ISBN code detects (a) a single error or (b) a double error created by inter-

changing two digits.

(iii) The old ISBN code corrects an error in a given place.

Proof (i) In F11, 10 = −1. So

0 =
10∑

1

ixi =
9∑

1

ixi + 10x10 =
9∑

1

ixi − x10.

Hence x10 =
9∑

1

ixi.

(ii) If yj = xj + t is received for xj with t 6= 0, but yi = xi for i 6= j, then

∑

iyi =
∑

ixi + tj = tj 6= 0

in F11.
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(iii) If the number is x1x2 · · ·x · · ·x10 with x in the j-th place, then

jx +
∑

i6=j

ixi = 0,

x = −j−1
∑

i6=j

ixi.

�

3.3.2 New ISBN numbers, also known as ISBN-13

Example 3.35. Examples of new International Standard Book Numbers:

978 − 0 − 691 − 09679 − 7

978 − 0 − 8218 − 4306 − 2

In the first of these, 978 is always present; 0 indicates the language, namely English; 691
is the publisher Princeton University Press; 09679 is the book number; and 7 is the check
digit. In the second, 8218 is the American Mathematical Society.

Definition 3.36.

x1x2 · · ·x13

is a new ISBN number if

(i) each digit is in {0,1,. . . ,9};

(iii)
x1 + 3x2 + x3 + 3x4 + · · ·+ x11 + 3x12 + x13 = 0

in Z10.

For example,

xi 9 7 8 0 6 9 1 0 9 6 7 9 7
ci 1 3 1 3 1 3 1 3 1 3 1 3 1

cixi 9 21 8 0 6 27 1 0 9 18 7 27 7
= 9 1 8 0 6 7 1 0 9 8 7 7 7 = 70

Theorem 3.37. (i) A new ISBN number x1x2 · · ·x13 has

x13 = −
12∑

i=1

cixi in Z10,

where ci = 1 for i odd and ci = 3 for i even.

(ii) The new ISBN code corrects an error in a given place.
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3.3.3 The Codabar system

Example 3.38. 4929 5316 9048 9053 is a valid 16-digit credit card number:
4929 is Barclaycard; the next 11 digits form the identifying number; the last digit is a

check digit.

Definition 3.39. In general,
x = x1x2 · · ·x15x16

is a codabar number if, with c = 2121212121212121,

c · x + t ≡ 0 (mod 10)

where t is the number of xi in odd positions i with xi ≥ 5.

In the example, t = 4 as only positions 5, 9, 13, 15 fulfil this condition. Hence,

x 4 9 2 9 5 3 1 6 9 0 4 8 9 0 5 3
c 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

xici 8 9 4 9 0 3 2 6 8 0 8 8 8 0 0 3 = 76

Now, 76 + 4 = 80 ≡ 0 (mod 10).

Note 3.40. As in Theorem 3.34, the codabar system corrects an error in a given place.
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