Chapter 3

Finite Fields

3.1 Construction

Definition 3.1. A field F is a set closed under two operations +, \times such that

- (i) (F, +) is an abelian group with identity 0;
- (ii) $(F\setminus\{0\},\times)$ is an abelian group with identity 1;
- (iii) For all $x, y, z \in F$,

$$x(y+z) = xy + xz, \quad (x+y)z = xz + yz.$$

Example 3.2. Examples of fields:

 \mathbf{R} = the real numbers;

 \mathbf{Q} = the rational numbers;

 \mathbf{C} = the complex numbers;

 $\mathbf{Z}_p = \mathbf{F}_p$ = the integers modulo the prime p.

Lemma 3.3. (i) A field has no zero divisors.

(ii) If the positive integer n is composite, \mathbf{Z}_n is not a field.

Proof (i) If $m_1m_2 = 0$ with $m_1, m_2 \neq 0$, then $m_1^{-1}m_1m_2 = 0$ and so $m_2 = 0$, a contradiction.

(ii) Suppose $n = m_1 m_2$ with $m_1 > 1$, $m_1 > 1$. Then, in \mathbf{Z}_n , it follows that $m_1 m_2 = 0$, again a contradiction by (i).

Lemma 3.4. If p is a prime, then \mathbb{Z}_p is a field.

Proof If $1 \le n < p$, then $n \ne 0$ in \mathbb{Z}_p . So there exist $a, b \in \mathbb{Z}$ such that

$$an + bp = 1.$$

In \mathbb{Z}_p , it follows that an = 1 and $n^{-1} = a$.

Example 3.5. (i) \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_5 , \mathbb{Z}_7 are fields;

(ii) \mathbf{Z}_4 , \mathbf{Z}_6 are not fields.

In
$$\mathbb{Z}_4$$
, $2 \times 2 = 4 = 0$. In \mathbb{Z}_6 , $2 \times 3 = 6 = 0$.

Definition 3.6. In any field F, the smallest positive integer p such that

$$\underbrace{1+1+\cdots+1}_{p}=0$$

is the *characteristic*.

If there is no such integer, then F has characteristic zero.

Lemma 3.7. In a finite field F,

- (i) the characteristic p is a prime;
- (ii) F is a vector space over \mathbf{F}_p .

Proof (i) If $p = p_1p_2$ with $1 < p_i < p$, then $p_1p_2 1 = 0$, whence $p_2 1 = 0$, a contradiction. (ii) This follows from the axioms of a vector space.

Theorem 3.8. If a finite field F has |F| = q, then $q = p^h$ with p a prime and $h \in \mathbb{N}$.

Proof Let $\{\alpha_1, \ldots, \alpha_h\}$ be a basis for F over \mathbf{F}_p . Then, if $x \in F$, there exist unique $t_1, \ldots, t_h \in \mathbf{F}_p$ such that

$$x = t_1 \alpha_1 + t_2 \alpha_2 + \dots + t_h \alpha_h.$$

As there are p choices for each t_i , so $|F| = p^h$.

Theorem 3.9. Any two fields of the same order q are isomorphic; that is, if F_1 , F_2 are fields with $|F_1| = |F_2| = q$, then there exists a bijection

$$\theta: F_1 \to F_2$$

with $\theta(x+y) = \theta(x) + \theta(y)$, $\theta(xy) = \theta(x) \theta(y)$ for all $x, y \in F_1$.

Notation 3.10. If |F| = q, write $F = \mathbf{F}_q$ or $F = \mathrm{GF}(q)$; here GF stands for Galois field.

Definition 3.11. A ring (= commutative ring with 1) is a set with two operations $+, \times$ satisfying all the axioms of a field except perhaps the existence of a multiplicative inverse for all non-zero elements.

Example 3.12. (i) Z, the integers;

(ii)
$$F[X] = \{a_0 + a_1 X + \dots + a_n X^n \mid a_i \in F; n \in \mathbb{N} \cup \{0\}\}$$
= ring of polynomials over F in the indeterminate X .

Definition 3.13. The polynomial f(X) in F[X] is *irreducible* if $f = f_1 f_2$ with $f_1, f_2 \in F[X]$ implies that either f_1 or f_2 is a constant.

Example 3.14. The polynomial $X^2 + 1$ is irreducible over \mathbf{R} but reducible over \mathbf{C} .

Lemma 3.15 (Remainder Theorem). Over a field F, the linear polynomial $X - \alpha$ divides f(X) if and only if $f(\alpha) = 0$.

Proof First,

$$f(X) = (X - \alpha)g(X) + R$$

with $R \in F$. Put $X = \alpha$; then $R = f(\alpha)$. So R = 0 if and only if $f(\alpha) = 0$.

Example 3.16. (i) If $F = \mathbf{F}_2$, then $X^2 + 1$ is reducible but $X^2 + X + 1$ is irreducible, since 1 is a zero of the first but 0, 1 are not zeros of the second.

- (ii) If $F = \mathbf{F}_3$, then $X^2 X + 1$ is reducible but $X^2 X 1$ is irreducible, since -1 is a zero of the first but 0, 1, -1 are not zeros of the second.
- (iii) If $F = \mathbf{F}_5$, then $X^2 + X 1$ is reducible but $X^2 X + 1$ is irreducible, since 2 is a zero of the first but 0, 1, -1, 2, -2 are not zeros of the second.

Example 3.17. Construction of a field of order p^2

First,

$$C = R[X]/(X^2 + 1) = \{x + y \mid x, y \in R; i^2 + 1 = 0\}.$$

Similarly, let $X^2 - bX - c$ be irreducible over \mathbf{F}_p . Write

$$\alpha^2 - b\alpha - c = 0.$$

Then

$$\mathbf{F}_{p^2} = \mathrm{GF}(p^2) = \mathbf{F}_p[X]/(X^2 - bX - c)$$
$$= \{a_0 + a_1\alpha \mid a_i \in \mathbf{F}_p; \alpha^2 = b\alpha + c\}$$

Example 3.18. (i) To construct \mathbf{F}_4 , take $X^2 + X + 1$, which is irreducible over \mathbf{F}_2 , and let $\omega^2 + \omega + 1 = 0$. Then

$$\mathbf{F}_4 = \{a + b\omega \mid a, b \in \mathbf{F}_2\} = \{0, 1, \omega, 1 + \omega = \omega^2\}.$$

(ii) To construct \mathbf{F}_9 , take $X^2 - X - 1$, which is irreducible over $\mathbf{F}_3 = \{0, 1, -1 = 2\}$, and let $\tau^2 - \tau - 1 = 0$. Then

$$\mathbf{F}_9 = \{a + b\tau \mid a, b \in \mathbf{F}_3; \ \tau^2 = \tau + 1\} = \{0, \pm 1, \pm \tau, \pm 1 \pm \tau\}.$$

Alternatively, take $X^2 + 1$, which is also irreducible over \mathbf{F}_3 and let $\iota^2 + 1 = 0$. Then

$$\mathbf{F}_9 = \{a + b\iota \mid a, b \in \mathbf{F}_3; \ \iota^2 = -1\} = \{0, \pm 1, \pm \iota, \pm 1 \pm \iota\}.$$

Example 3.19. Construction of \mathbf{F}_q with $q = p^h$

Let $f(X) = X^h - b_{h-1}X^{h-1} - \cdots - b_1X - b_0$ and let $f(\alpha) = 0$, where $f \in \mathbf{F}_p[X]$ and irreducible. Then

$$\mathbf{F}_q = \{ a_0 + a_1 \alpha + \dots + a_{h-1} \alpha^{h-1} \mid a_i \in \mathbf{F}_p; f(\alpha) = 0 \}$$

is a field of order $q = p^h$.

Theorem 3.20. Let $q = p^h$. The field \mathbf{F}_q has the following properties.

(i)
$$(x+y)^p = x^p + y^p$$
 for all $x, y \in \mathbf{F}_q$.

- (ii) $t^q = t$ for all $t \in \mathbf{F}_q$.
- (iii) There exists $\alpha \in \mathbf{F}_q$ such that

$$\mathbf{F}_q = \{0, 1, \alpha, \dots, \alpha^{q-2} \mid \alpha^{q-1} = 1\}.$$

(iv) Under multiplication, $\mathbf{F}_q \setminus \{0\}$ is a cyclic group of order q-1:

$$\mathbf{F}_q \cong \mathbf{Z}_{q-1}$$
.

(v) Under addition,

$$\mathbf{F}_q \cong \underbrace{\mathbf{Z}_p \times \cdots \times \mathbf{Z}_p}_{h}.$$

- (vi) If F_1 , F_2 are finite fields such that $F_1 \subset F_2$, then $|F_1|$ divides $|F_2|$.
- (vii) The automorphism group of \mathbf{F}_q is

$$\operatorname{Aut}(\mathbf{F}_q) = \{1, \varphi, \dots, \varphi^{h-1}\} \cong \mathbf{Z}_h,$$

where
$$\varphi(x) = x^p$$
, $\varphi^i(x) = x^{p^i}$.

Definition 3.21. If α is as in Theorem 3.20 (iii), it is *primitive*. The irreducible polynomial over \mathbf{F}_p that α satisfies is also *primitive*.

Note 3.22. A primitive element in \mathbf{F}_q has order q-1, where the order of x is the smallest positive integer n such that $x^n=1$. The order n divides q-1 for any $x \in \mathbf{F}_q \setminus \{0\}$.

Corollary 3.23.

$$\prod t = -1,$$

where the product is taken over all $t \in \mathbf{F}_q \setminus \{0\}$.

3.2 Irreducible polynomials

Theorem 3.24. $X^{p^n} - X$ is the product of all monic irreducible f in $\mathbf{F}_p[X]$ such that deg f divides n.

Let N_d be the number of polynomials over \mathbf{F}_p which are monic and irreducible of degree d.

Corollary 3.25. $p^n = \sum_{d|n} dN_d$.

Definition 3.26 (The Möbius function). If the integer $m = p_1^{r_1} \cdots p_k^{r_k}$, then

$$\mu(m) = \begin{cases} 1 & \text{if } r_1 = r_2 = \dots = r_k = 0, \\ 0 & \text{if } r_i > 1 \text{ for some } i, \\ (-1)^k & \text{if } r_1 = r_2 = \dots = r_k = 1. \end{cases}$$

If f is a function $\mathbb{N} \to \mathbb{Z}$ such that

$$g(n) = \sum_{d|n} f(d),$$

then

$$f(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) g(d).$$

Corollary 3.27.
$$N_n = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) p^d$$
.

Proof Put
$$g(n) = p^n$$
, $f(n) = nN_n$.

Corollary 3.28. If N(n,q) is the number of irreducible monic polynomials of degree n over \mathbf{F}_q , then

$$N(n,q) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) q^d.$$

Corollary 3.29. N(n, q) > 0.

Proof

$$N(n,q) > \frac{1}{n}(q^n - q^{n-1}... - q) = \frac{1}{n}\left(q^n - \frac{q^n - q}{q - 1}\right) > 0.$$

Hence \mathbf{F}_{p^h} can be constructed from an irreducible polynomial of degree h and such a polynomial always divides $X^{p^h} - X$.

Example 3.30. Construct F_8 over F_2

$$X^{8} + X = X(X^{7} + 1)$$

$$= X(X + 1)(X^{6} + X^{5} + X^{4} + X^{3} + X^{2} + X + 1)$$

$$= X(X + 1)(X^{3} + X^{2} + 1)(X^{3} + X + 1).$$

Using $X^3 + X^2 + 1$, let $\epsilon^3 + \epsilon^2 + 1 = 0$. Then

$$\mathbf{F}_8 = \{0, 1, \epsilon, \epsilon^2, \epsilon^3, \epsilon^4, \epsilon^5, \epsilon^6 \mid \epsilon^7 = 1\}.$$

Note that $\epsilon^6 + \epsilon^4 + 1 = 0$, $\epsilon^5 + \epsilon + 1 = 0$. Hence, for example,

$$\begin{split} \epsilon + \epsilon^3 &= \epsilon (1 + \epsilon^2) = \epsilon . \epsilon^3 = \epsilon^4; \\ \epsilon^2 + \epsilon^6 &= \epsilon^2 (1 + \epsilon^4) = \epsilon^2 . \epsilon^6 = \epsilon^8 = \epsilon. \end{split}$$

3.3 Applications

3.3.1 Old ISBN numbers, also known as ISBN-10

Example 3.31. F_{11}

Example 3.32. Examples of old International Standard Book Numbers

$$0 - 19 - 853537 - 6$$

$$0 - 19 - 850295 - 8$$

Here, 0 indicates the language, namely English; 19 is the publisher, Oxford University Press; 850295 is the book number; and 8 is the check digit.

Definition 3.33.

$$x_1x_2\cdots x_{10}$$

is an old ISBN number if

- (i) each of the first nine digits is in $\{0,1,\ldots,9\}$;
- (ii) the last digit may also be X;

(iii)

$$\sum_{i=1}^{10} ix_i = 0$$

in \mathbf{F}_{11} .

For example,

Theorem 3.34. (i) An old ISBN number $x_1x_2 \cdots x_{10}$ has

$$x_{10} = \sum_{i=1}^{9} ix_i$$
 in \mathbf{F}_{11} .

- (ii) The old ISBN code detects (a) a single error or (b) a double error created by interchanging two digits.
- (iii) The old ISBN code corrects an error in a given place.

Proof (i) In \mathbf{F}_{11} , 10 = -1. So

$$0 = \sum_{1}^{10} ix_i = \sum_{1}^{9} ix_i + 10x_{10} = \sum_{1}^{9} ix_i - x_{10}.$$

Hence $x_{10} = \sum_{1}^{9} ix_i$.

(ii) If $y_j = x_j + t$ is received for x_j with $t \neq 0$, but $y_i = x_i$ for $i \neq j$, then

$$\sum iy_i = \sum ix_i + tj = tj \neq 0$$

in \mathbf{F}_{11} .

(iii) If the number is $x_1x_2\cdots x\cdots x_{10}$ with x in the j-th place, then

$$jx + \sum_{i \neq j} ix_i = 0,$$
$$x = -j^{-1} \sum_{i \neq j} ix_i.$$

3.3.2 New ISBN numbers, also known as ISBN-13

Example 3.35. Examples of new International Standard Book Numbers:

$$978 - 0 - 691 - 09679 - 7$$

 $978 - 0 - 8218 - 4306 - 2$

In the first of these, 978 is always present; 0 indicates the language, namely English; 691 is the publisher Princeton University Press; 09679 is the book number; and 7 is the check digit. In the second, 8218 is the American Mathematical Society.

Definition 3.36.

$$x_1x_2\cdots x_{13}$$

is a new ISBN number if

(i) each digit is in $\{0,1,...,9\}$;

(iii)
$$x_1 + 3x_2 + x_3 + 3x_4 + \dots + x_{11} + 3x_{12} + x_{13} = 0$$

in Z_{10} .

For example,

Theorem 3.37. (i) A new ISBN number $x_1x_2 \cdots x_{13}$ has

$$x_{13} = -\sum_{i=1}^{12} c_i x_i \quad in \ \mathbf{Z}_{10},$$

where $c_i = 1$ for i odd and $c_i = 3$ for i even.

(ii) The new ISBN code corrects an error in a given place.

3.3.3 The Codabar system

Example 3.38. 4929 5316 9048 9053 is a valid 16-digit credit card number:

4929 is Barclaycard; the next 11 digits form the identifying number; the last digit is a check digit.

Definition 3.39. In general,

$$x = x_1 x_2 \cdots x_{15} x_{16}$$

is a codabar number if, with c = 212121212121212121,

$$c \cdot x + t \equiv 0 \pmod{10}$$

where t is the number of x_i in odd positions i with $x_i \geq 5$.

In the example, t = 4 as only positions 5, 9, 13, 15 fulfil this condition. Hence,

Now, $76 + 4 = 80 \equiv 0 \pmod{10}$.

Note 3.40. As in Theorem 3.34, the codabar system corrects an error in a given place.