Q1) Show that every finite integral domain is a field.

- **Q2**) (a) Show that the set $K = \{ \begin{pmatrix} a & b \\ -3b & a \end{pmatrix} : a, b \in \mathbb{Q} \}$ is a field with respect to matrix addition and multiplication.
 - **(b)** Show that *K* is isomorphic to the field $\mathbb{Q}(i\sqrt{3}) = \{a + bi\sqrt{3}: a, b \in \mathbb{Q}\}.$
- Q3) Let D be an integral domain, let φ be the monomorphism from D into Q(D) such that $\varphi(a) = \frac{a}{1}$, and let K be a field with the property that there is a monomorphism θ from D into K. Prove that, there exists a monomorphism $\psi: Q(D) \to K$ such that $\psi \circ \varphi = \theta$.
 - $\mathbf{Q4}$) Consider the group G of order 8 given by the multiplication table

•	е	а	b	С	p	q	r	S
e	e	а	b	С	p	q	r	S
а	а	b	С	е	q	r	S	p

{----}

b	b	С	e	а	r	S	p	q
С	С	e	а	b	S	p	q	r
p	p	S	r	q	е	С	b	а
q	q	p	S	r	а	е	С	b
r	r	q	p	S	b	а	е	С
S	S	r	q	p	С	b	а	e

- (a) Show that $B = \{e, b\}$ and $Q = \{e, q\}$ are subgroups.
- (b) List the left and right cosets of B and of Q, and deduce that B is normal and Q is not.
- (c) Let *H* be the group given by the table

	е	x	у	Z
e	е	x	у	Z
X	x	e	Z	У

у	У	Z	e	x
Z	Z	у	x	е

Describe a homomorphism φ from G onto H with kernel B.

Q5) Prove that, every Euclidean domain is a principal ideal domain.

Q6) Let $R = \{a + bi\sqrt{3} : a, b \in \mathbb{Z}\}.$

(a) Show that R is a subring of \mathbb{C} .

- (b) Show that the map $\varphi: R \to \mathbb{Z}$ given by $\varphi(a + bi\sqrt{3}) = a^2 + 3b^2$ preserves multiplication: for all u, v in $R, \varphi(uv) = \varphi(u)\varphi(v)$. Show also that $\varphi(u) > 3$ unless $u \in \{0,1,-1\}$.
- (c) Show that the units of R are 1 and -1.
- (d) Show that $1 + i\sqrt{3}$ and $1 i\sqrt{3}$ are irreducible, and deduce that R is not a unique factorization domain.
- **Q7**) Show that, even if K is a field, K[X,Y] is not a principal ideal domain.

Q8) Show that $3X^4 - 7X + 5$ is irreducible over \mathbb{Q} .

Q9) Let L: K be a field extension such that [L: K] is a prime number. Show that there is no subfield E of L such that $K \subset E \subset L$.

Q10) Let α be a root in \mathbb{C} of the polynomial $X^2 + 2X + 5$. Express the element $\frac{\alpha^3 + \alpha - 2}{\alpha^2 - 3}$ of $\mathbb{Q}(\alpha)$ as a linear combination of the basis $\{1, \alpha\}$.

Q11) Show that the polynomial $X^3 + X + 1$ is irreducible over $\mathbb{Z}_2 = \{0,1\}$, and let α be the element $X + \langle X^3 + X + 1 \rangle$ in the field $K = \mathbb{Z}_2[X]/\langle X^3 + X + 1 \rangle$. List the 8 elements of K, and show that $K \setminus \{0\}$ is a cyclic group of order 7, generated by α .

(------)

Q12) Describe a ruler and compasses construction for the bisection of an angle.

Q13) Describe ruler and compasses constructions for the angle $\frac{\pi}{3}$.

Q14) Show that splitting field of $X^4 + 3$ over \mathbb{Q} is $\mathbb{Q}(i, \alpha\sqrt{2})$, where $\alpha = \sqrt[4]{3}$. What is its degree over \mathbb{Q} ?

Q15) Let $A = \{a_1, a_2, \dots, a_n\}$ be a finite subset of a commutative ring R. Then the set $Ra_1 + Ra_2 + \dots + Ra_n$ is the smallest ideal of R containing A.

Q16) Let D be a principal ideal domain, let p be an irreducible element in D, and let $a, b \in D$. Show that, if $p \setminus ab$ implies that $p \setminus a$ or $p \setminus b$.

Q17) Let L: K and M: L be field extensions, and [M: K] be finite. Show that, if [M: K] = [L: K], then M = L.

Q18) Show that $f(X) = X^3 + X + 1$ is irreducible over \mathbb{Q} . let α be a root of f in \mathbb{C} . Express $\frac{1}{\alpha}$ and $\frac{1}{\alpha+1}$ as linear combinations of $\{1, \alpha, \alpha^2\}$.

Q19) Let K be a field of characteristic 0, and suppose that $X^4 - 16X^2 + 4$ is irreducible over K. Let α be the element $X + (X^4 - 16X^2 + 4)$ in the field $L = K[X]/(X^4 - 16X^2 + 4)$. Determine the minimum polynomial $\alpha^3 - 14\alpha$.

Q20) Show how to construct a square equal in area to a given parallelogram.

Q21) Describe ruler and compasses constructions for the angle $\frac{\pi}{4}$.

- **Q22**) Determine the splitting fields over \mathbb{Q} of $X^4 5X^2 + 6$, and find their degree over \mathbb{Q} .
- Q23) Let n be a positive integer. Prove that, the residue class ring $\mathbb{Z}_n = \mathbb{Z}/\langle n \rangle$ is a field if and only if n is prime.
- **Q24**) Show that $g = 7X^4 + 10X^3 2X^2 + 4X 5$ is irreducible over \mathbb{Q} .
- **Q25**) Let L: K and M: L be field extensions, and [M: K] be finite. Show that, if [M: L] = [M: K], then L = K.

Q26) Determine the minimum polynomial of $\sqrt{1+\sqrt{2}}$ over \mathbb{Q} . What is its minimum polynomial over $\mathbb{Q}[\sqrt{2}]$?

Q27) Let K be a field of characteristic 0, and suppose that $X^4 - 16X^2 + 4$ is irreducible over K. Let α be the element $X + \langle X^4 - 16X^2 + 4 \rangle$ in the field $L = K[X]/\langle X^4 - 16X^2 + 4 \rangle$. Determine the minimum polynomial $\alpha^3 - 18\alpha$.

Q28) Construct a square equal in area to a given rectangle.

Q29) Describe ruler and compasses constructions for the angle $\frac{\pi}{6}$.

Lecture Notes in Fields and Galois Theory By Dr. Najm Al-Seraji						
(30) Determine	the splitting	fields over	\mathbb{Q} of	$X^4 - 1$, and	I find thei	
egree over $\mathbb Q$.						