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A. A review of the fundamental mathematical concepts for solving differential
equations: (ALl eyl Jal dpulal) dudly 1) asaliall () ai) )
(Reference: Introduction to Differential Equations, Lecture notes for MATH
2351/2352, Jeffrey R. Chasnov)

A bas ic understanding of calculus is required to undertake a study of differential

equation alialall ¥ abaall Jad (5 )5 i JalSil) 5 Juzaliil) (jlaces Cllil agd
The trigonometric functions 4t ) galf
The Pythagorean trigonometric identity is o Aliall ey s i Aaaia

sin’x + cos?x = 1

And the addition theorems are (o daga dgilial il Hhas

sin(x +y) = sin(x) cos(y) * cos(x) sin(y)

cos(x 1) = cos(x) cos(p) + sin(x) sin(y)
The following symmetry are also useful: Lgaladinl (S Lyl allill alialidl)

sin(m/2-x)=cosx , cos(m/2-x)=sinx;
And
sin(-x) = -sin (x) (0dd function) , cos (-x)= cos (x) (Even function)

Also, the values of sin x in the first quadrant can be remembered by the rule of quarters,
with 0°=0, 3°=r/6, 45°= /4, 60°= /3, 90°= 1/2:

gLoY) 8 JOIA (e e JSX Saa J oY) ) (A L) U cuald) Alla a8 XS

Sin0°= ﬁ sin30°= \ﬁ sin45°= ﬁ sin60°= \/E sin90°= \/E
4 4 4 4 4

1. The exponential function and the natural logarithm  (dall asi L& glll g Asl) adial)

The exponential function exp(x)=e* and natural logarithm In x are inverse functions
satisfying Lgnzanal dpulSasl 150 o rgadall i jle ol Al 5 4puy) adlall

e™ =x, Ine*=x
The usual rules of exponents apply: A Adlall e gk Al agalsie ) (il 53l
X
eXey = ex+y’ e /ey = X7, (ex)p = ebx

The corresponding rules for the logarithmic function are: & A le i) Allall alilaall il 58l



In(xy) = Inx + Iny, In(* /y) = Inx — Iny, Inx? = plnx

2. Definition of the derivative ARl iy g

The derivate of the function y=f (x), denoted as f'(x) or dy/dx, is defined as the slope of

the tangent line to the curve y=f (x), at the point (x,y). This slope is obtained by a limit, and
is defined as:

Jaal) da 48 yra Ak die allall Jiay ) iniall Guleall agfieall Jadl) Je 4ly iy allall (3lE55)

s Chyry g aall aladiul salayl (Sas

fx+h) - fx)

f10) = lim o
3. Differentiating a combination of functions J) 99 Ae ganeal (3LELEY)
3.1 The sum or difference rule z okl gl aandl oy sl
The derivative of the sum f(x) and g(x) is A orlly en gland)

(f+9)=f"+g

Similarly, the derivative of the difference is 9 il 7 pha Jeas (Bl Lgalia 5 ) gocy
fF-9)'=f~g
3.2 The product rule Qi pal) ¢ gild
The derivative of the product of f(x) and g(x) is 9 oilly @ i Jeala ddiie

fg9)' =fg+rg

And should be memorized as “the derivative of the first times the second plus the first times

the derivative of the second”.
A e e Juala ) Ciliae 46l allall 8 3 oW1 adlal) Aiidie (o juim Juals Wil S Cany g
PP PUR PP i

3.3 The Quotient rule dandl) Juala ¢ 38
The derivative of the quotient of f (x) and g (x) is s Ol dand Juala ddidia



N _f'a-fg'
<§>: ggzg

And should be memorized as “the derivative of the top times the bottom minus the top

times the derivative of the second”.

Lol Aly 8 Llaal) ASiia @ Jeals (e 7 5 ke aliall Ally 8 Jasad) ally d8isa Ll SN Caagg
Al Ao Al a e o any il ladall

3.4 The chain rule aludad) oy gid

The derivative of the composition of f (x) and g (x) is o A pall Al dsida

(Fl9) = £ (9) - g'G)

4. Differentiating elementary functions Al ¥ ) gal) Adiia
5.1 The power rule sl o8
The derivative of a power of x is given by QO hand g il Alla AEide
d
—_ p: p_l
dx X px
5.2 Trigonometric functions ALY ) gal)
The derivative of sin x and cos x are o bl cuall g cuall Ally Aaia
(sinx)’ = cosx, (cosx) = —sinx.

We thus say that “the derivative of sine is cosine,” and “the derivative of cosine is minus

sine”. Notice that the second derivatives satisfy

A Ama ) By " cun b aled cuall Aide s ol cun b cual) Ao AEES ) Js ) (S

-

(sinx)" = —sinx, (cosx) = —cosx.
5.3 Exponential and natural logarithm functions Al e 5lll g 4] J) gl
The derivative of e*and In x are (o A e slll adlall 5 4y allal) d3i

1
e*) =e* (Inx) =-
X



5. Definition of the integral Jalsil) iy ol

The definite integral of a function f (x) > 0 from x = a to b (b > a) is defined as the area
bounded by the vertical lines x = a, x = b, the x-axis and the curve y = f (x). This “area
under the curve” is obtained by a limit. First, the area is approximated by a sum of rectangle
areas. Second, the integral is defined to be the limit of the rectangle areas as the width of
each individual rectangle goes to zero and the number of rectangles goes to infinity. This

resulting infinite sum is called a Riemann Sum, and we define.

X saall s Al isie G sadaall 4alisal) 4y 4dy 25 (Sae s b adaiill ) g ddaiil) (pe allall saaall oSl
o328 Y g 2 gaall Aasl go Waalag) (Sas Aaiall Ciadasluall da b g @ bl die G geal) Gubadl) e JS
Jebatose JST Aalisall 3 50a ) (5 oS00 G pay JalSal) Lals paawie idldatone Clalise gan Sy () 5S81 Cyi 4alsdl)
o el gt panll A g e ()5S ) (Sae ) 20 5 Jebitdll e sl (e 3 e

i Gladl ) en

b N
fa FOO) dx = }lig(l)z fla+ (n—1h).h
n=1

where N = (b—a)/h is the number of terms in the sum. The symbols on the left-hand-side of
EQ. are read as “the integral from a to b of f of x dee x.” The Riemann Sum definition is
extended to all values of a and b and for all values of f (x) (positive and negative).

Accordingly,

dgall B Hga )l afiie IS Aablia o ande JalSEl 2 gas G 3AN (e salagl Sy SOk d2e Cus
U gy (gl ) aas iy et X il ddsall Adlall ) g adaiil) (e JWlSES T alobead) (e i) (5 )
lad 5 (aalladl g 4 gall) dlall a8 JSI5 b 5@

fbaf(X) dx = —fabf(x)dx and fab(—f(x)) dx = —fabf(x) dx

Also, ifa < b < ¢, then

ch(x) dx = Jabf(x)dx +chf(x) dx



Which states (when f(x) > 0) that the total area equals the sum of its parts.
Ll ) g sana (5 sbt dabisall 8 jhia (e S g Alla JS1 ) Gl (Al
7.The Fundamental theorem of calculus Jalsil) g Jualiil) (jlacund dpalial) 4y o)

Using the definition of the derivative, we differentiate the following integral:

- ) JalSal) Hipa (BR5 a p cARAl) iy a3 aladly

d (* _ f;+hf(s)ds — f;f(s)ds
Efa f(s)ds =lim h

[T ()ds
m ——————————————
h-0 h

—im L }Ex) - f0)

h—-0

This result is called the fundamental theorem of calculus, and provides a connection
between differentiation and integration.

S o iGN Jay i Arpa 55 JalSll 5 Jualiil) ol ¥ ag plail i o3le ) angiil

The fundamental theorem teaches us how to integrate function. Let F(x) be a function such
that F’(x) = f (x). We say that F(x) is antiderivative of f (x). Then from the fundamental
theorem and the fact that the derivative of a constant equals zero,

ag et e ) Allal) Adiie e sSae Ll JalSal) e anilll allall Ca jas adlall JalSs 36K Lialad 4l 4y yladl)

F(x) = fo(s)ds+c

a

Unfortunately, finding antiderivatives is much harder than finding derivatives, and
indeed, most complicated functions cannot be integrated analytically.

Sl Sy Y Tan stz J) 50 cadl sl cciliidiall o) giall e S0 Ciral ga ClELIAN (s sSre alag) el
Aaldaill (5 yhally Lelalss

We can also derive the very important results directly from the definition of the derivative

and the definite integral. We will see it is convenient to choose the same h in both limits.

With F'(x)=f (x), we have

DOUEA) Cualiall e 48) (5 50 8 g 20l JalSHl g a@idiall Cay gal (e 3 il las dege 4a®t (LS ) Lian) (Saa
Omaal h J el b



fbf(s)ds = be’(s)ds

a

=}lirr(1)2ﬁ=1F’(a+(n—1)h)-h

N F(a+nh)-(a+(n-1)h) .

= ;ll_r)r(l) Yin=1 h h

N
= }fi%z F(a+nh)—(a+ (n—1)h)
n=1

The last expression has an interesting structure. All the values of F(x) evaluated at the

points lying between the endpoints a and b cancel each other in consecutive terms. Only
the value -F(a) survives when n=1, and the value +F(b) when n=N, yielding again

Legia JS (b D 5 @ Aledl) G AaBl 5l Talial) (8 g guanall adlal) o JS aLaia S 3y Aty 4l a1 el

Allall Aafi g e n=1 dad ()58 Ladie Lglun (S g adaiil) die allal) G Jasd Ul Al ool yall 3 A

ole! o KAl daaall Jal&all dliles dosa e 4l Joanil (n=N Ladie lplua (Koo b dkiill dic

8. Definite and indefinite integrals ddaal) & g ddaal) Jalsil)

The Riemann sum definition of an integral is called a definite integral. It is convenient to
also define an indefinite integral by

j FG)dx = F(),

Where F(x) is the antiderivative of f (x) AGRal) u sSaa oo axill) allall Cus
9. Indefinite integrals of elementary functions

From our known derivatives of elementary functions, we can determine some simple

indefinite integrals. The power rule gives us

LEJSM u}lﬁw\ sddaall LDalSS e iany J.\J;.\@\Lﬂuu’@}y‘ d\jﬂ\wﬁwm&ﬁd%w
b

n+1
fx”dx = +cn+#1

n+1

When n=-1, and x is positive, we have
Lol (5% A s X el N=-1 08 Lerie
1
f—dx =Ilnx+c
X
If x is negative, using the chain rule we have

7



Ll (5 bl () g8 alasinly b x il 13

d 1
aln(—x) =7
Therefore, since O Ly Y
—-x ifx<0;

lxl:{x if x>0;

We can generalize our indefinite integral to strictly positive or strictly negative x:
Al ) dam pall X ail daaall ye LLelSS arans LiSay

1
f—dx =In|x| + ¢
x

Trigonometric functions can also be integrated:
Lea) LelalS alag) (Sae adiliall JI sal)

j cosx dx = sinx + c,f sinx dx = —cosx + c.

Easily proved identities are an addition rule
4l ae ) 8 ClaiUatia il Al e (Sae

[ +96) = [ r@dr+ [ g ax;
And application by a constant: Cally 4y 5 paaall 5
JAf(x)dx =A J f(x)dx.

This permits integration of functions such as Jie JI 59 JalSi ransi oac ) 12
3 7X2

x
(x2+7x+2)dx=?+7+2x+c,

And

J(S cosx + sinx)dx = 5sinx — cosx + c,

10.Substituation Jlasia)
More complicated functions can be integrated using the chain rule, Since
O G alulid) & g8 alasin Aa g LeLalSS alao (Sae Tl SSI J) 50



d
—f(9()) =f(9())-9'Cx),
We have
[ (9@)- ' crax = (g0) +<.

This integration formula is usually implemented by letting y=g(x). Then one write
dy = g'(x) dx to obtain

Sas¥ dly = (X)X LS San o Y=g (X) o Ll 5l e 5 poms (S JalST B
[ £ (g@)g@ax = [ r'oray = £0) +¢ = fg00) +c.

11. Integration by parts 45 il Jalsil)
Another integration technique makes use of the product rule for differentiation.
Gltiall Al ¢ 98 JMadul aiiey s A JalSS 4y
Since Cua
(fg)'=f'g+fg
We have
fla=Gg9) - fg’

Therefore,
ff’ (x)g (x) = f(x)g(x) —ff(x)g’(x)dx

Commonly, the above integral is done by writing

AU Ay oDle | JalSill 3ale

u=g(x) dv = f'(x)dx
du = g'(x)dx v=f(x)
Then, the formula to be memorized is o L STy Al 4l Ll A

fudv=uv—fvdu



12. Tylor series Ll Al

A Tylor series of a function f (x) about a point x =a is a power series representation of f (x)
developed so that all the derivatives of f (x) at a match all the derivatives of the power
series. Without worrying about convergence here,

aen oy ) (g sl Al Adas) g0 6 ) ghaall allall Jiiad sale ) (e o jle (A Alime ki Jsa alla] HLG ALl
L il Jga Sl8l g (o g8l Aliala chlaidia (galdat adadil) &l die Lgileida

We have

12} a nr a
£ = f@ + F@G - )+ 2 - L s g

Notice that the first term in the power series matches f(a), all other terms vanishing, the
second term matches f'(a), all other terms vanishing, etc ... Commonly, the Tylor series
is developed with a=0. We also make use of the Tylor series in a slightly different form,
with x=x,+¢ and a=x,:

sy F7(@) by I aa)l Jag s AY) 3 5aal) OS5, (@) b s sl Alidis (e J 51 2l o aaY
o L Aluludia 2l (Sae =0 e b skt ai LS dude (b ale U0 2 5aa]) A 13Sa 5 Jegd 53
e et

fll(x*) 5 +flll(x*)

3
21 € T

fl+e) = flx) + f'(x)e+

Another way to view this series is that of g(x) = f(x, + €) expand about € = 0.
€=0dres gx) =f(x, +6€) cbrsilalidelli jleha¥ o Al A5 Hla ollia

Taylor series that are commonly used include (ranall 4=l o) gy deddiusall LG ALl
£ q xZ X3
er = +X+E+§+"',

3 5

. X X
SINX =X =+
x2

x4

cosx=1—-—+=—"--,
20 4l
! 1 + x? x| < 1
15 X+ x , for|x
2,3
1n(1+x)=x—7+?—--- for|x| <1

A Taylor series of a function of several variables can also be developed. Here all partial
derivatives of f (x, y) at (a, b) match all the partial derivatives of the power series. With the
notation

10



(@, b) e f (X, y) Jadiiall ciliidall men un Lind shai ) (San & piia e cllias allal LG alola
il g, (sl Aluduad i el el il

of of 92 92f 92f

= — = — = — = — = — t
fx ox’ Iy dy’ fex 0x2’ fry oxdy’ Ty a2’ ¢

We have

f,y) = f(a,b) + fi(a,b)(x — a) + fy(a,b)(y — b)

1
+ 5 (fxx(ar b)(x - a)z + foy(a: b)(x - a)(y - b)
+ fyy(a, b)(y = b)?) + -

13. Complex numbers

We define the imaginary number i to be one of the two numbers that satisfies the rule
(i)? = —1, Formally, we write i = v/—1. A complex number z is written as

[ = S asen )l Bl (1)2 = —1, sac @l 38 ) cpose (e aad 5 5 sS0 j oS pal) daall Cay et Sae
S S all 2aall /-1

z=x+1iy
where x and y are real numbers. We call x the real part of z and y the imaginary part and
write.
Ll e ally 5 7 (e (Rlall e jall X e 5 Agiida dlae) Ay 5 X Cus
x = Re z, y = Imz.

Two complex numbers are equal if and only if their real and imaginary parts are equal. The
complex conjugate of z = x + iy, denoted as z, is defined as

Z=X+ iy S el aall (38 jall 4 sluiia odiaall g A88al) o) 32 V1 IS 13 Jadd (sl (51 65 (S pe (pade
Gz A L

Z=X-—1ly

Using z and Z , we have
1 1
Rez==(z+172), Imz=—(z+7%)
2 21

Furthermore,
zZ=(x+iy)(x —iy) =x2 —i?y? =x% +y?
and we define the absolute value of z, also called the modulus of z, by
alrall cansi (Al 5 S all 2221 ddllaall dail) Cay 25 (S 5 S jal) 22l Jalaa

11



|z| = (z2) /2
= Jx2+y?

We can add, subtract, multiply and divide complex numbers to get new complex numbers.
Withz=x+iyandw =s+it,and X, y, s, t real numbers, we have

2 S e e Al A4S pall dlae Y e dandl) g il &kl ealdl Glilee (a8 o) (Sas

z+w=x+s)+i(y+t); z-w=x-s)+i(y—1t);
zw = (x + iy)(s + it) = (xs — yt) + i(xt + ys);

z ZW
W oww
_(x+iy)(s—it)
B S2 + t2
_ (xs+yt) . (ys—xt)
T x24y2 sZ2+t2
Furthermore
|zw| = /(x5 — yt)2 + (xt + ys)?
= V(2 +y))(s? +2)
= |z||w|
And
zw = (xs — yt) —i(xt + ys)
=(x—-iy)(s—it) =zw
Similarly

o= () =%
wh w|"\w/ — w
Also, z + w = Z + w, However, |z + w| < |z| + |w|, atheorem as the triangle inequality.
Caliiall (5 sl ade 4y 5k 02
It is especially interesting and useful to consider the exponential function of an imaginary
argument. Using the Taylor series expansion of an exponential function, we have
alall LG Aale a5 8 alasinly | LAl ¢ jad) 238Ul 4] Al e ] ddo s alaid D e pald (S 40
Ll 58y, 4!

. AN\2 10\ 3 i0)% 160)5
b _ 14 0) 4+ (129!) N (Lg!) N (lZ!) N (lg!) 4o

6% 6* 63 6°
=<1‘E+Z"“)<9‘§+E+'“>

= cosO + isinf

12



Therefore, we have
cos = Ree'?, sinf = Ime'?
Since cosm = —1 and sinw = 0, we derive the celebrated= Euler’s identity
oyl by sl At (BUELE) e Caad) g alad Cauadl Alal 3o ) o )5S o g il (i
e®+1=0
That links five fundamental numbers, 0, 1, i, ¢ and =, using three basic mathematical
operations, addition, multiplication and exponential, only once.
Baa) 55 30 Y] 5 ol aaad) dpialy ) cililee GO Al 5 | Agul) dlac) Gued Loy 35 48] 128
Using the even property cos(—8) = cos6 and the odd property sin(—8) = —sin8,
we also have
e Jeani ol Aal A i) apealall s olai cual) AUall agn g 50 Aualall ladiuly g
e~ % = cosh — isind
And the identities for e‘® and e~ results in the frequently used expressions,

KIS C“\‘“‘H i) die b 4nay) JIsall claiall

: elf 4 710 0 el —e™¥
cosf = ————, S = ——-——
2 20

The complex number z can be represented in the complex plane with Re z as the x-axis and
Im z as the y-axis. This leads to the polar representation of z=x+iy

&)ﬂ\jbw\JJM‘_ACu‘,s..ﬂ@:\saj‘;Mb)hﬁ‘i\caw\djw\m‘ywu&dﬂ\ddﬂ\
z =re'?,

Where r = |z| and tanf = y/x. We define argz = 6. Note that 6 is not unique, through
it is conventional to choose the value such that —r < 8 <, and & = 0 where r = 0.

el S LS saall Ik ey Uls 3l a LR Cauliall (e 4l

13



Differential Equations (DE’s):

Differential Equation are the language in which the laws of nature are expressed.
Understanding properties of solutions of differential equations is the Fundamental to much
of contemporary science and engineering. (Reference: MIT)

alaldl) Yl Ja paibad agd daplall il 8 e il Lealadinl o5 Sl aalll o aglialal) Y aleall
‘D)AL’.‘J\ MJ.'\.@J\} ?JLM Q\A:u.i:ﬂ (e ‘)...\355 ‘é.m\.m\ ol

A differential equation is an equation involving an unknown function and its derivatives.
(Reference: DE SCHAUMYS)
LlEida g 4l seae ally e (g giad alilaa e o ke (& aplialdil) alilaall
The differential equations can be classified into two kinds; An ordinary differential
equation (ODE), and a partial differential equation (PDE).
Al bl GY¥aleall g aalie Y aplalall Yaleall ;e o il ) (Saa alialal) Y alayll
1. An ordinary differential equation (ODE) is a differential equation for a function of
a single variable, (i.e. unknown function depends on only one independent variable) e.g.
X(t).
Jitia juaie Jatd e aaiat 4l geae adla gl) taal g patie cold allall 4glialds alilas & 4piliie V) alialédl) alabaal)
(s
2. A partial differential equation (PDE) is a differential equation for a function of
several variables, (i.e. unknown function depends on two or more independent
variables) e.g. v(x,y,z,t).
Oalita (g ppie e daial 4l sena ally (g)) ) jpaie Bae b allall 4plialds Alalas o4 4 jal) 4lialdl) alalaall
(S
Several formulas of the derivatives can be used to express the differential equations.
alalall c¥alaall e il aladind o) (See QR jua i

s v D dy Ay dy  Of
YooYy Dy, or G N ok  axayaan” T

Examples of several formula of differential equations involving the unknown function y.
Y Asene ally diaaiall aplialdil) Y alaall (o jona B2l AL

d

& 543 (ODE)

dx

d?y _(dy)’
y_- 2 CAY - ODE
edx2+2{dx} 1 (ODE)
d3y dzy

e i) — 2 — ODE
4dx3 + (sinx) I +5xy=0 ( )

14



dzy)? dyy’ dyy?

Ef ol o= oo
92 92
307 45 =0 (PDE)

In this course we will be concerned solely with ordinary differential equations
agaliie V) anlialal) ey alaad) Jash Al 5o J sl o gy sSI) 18 DA

Differential equations are often classified with respect to order. The order of a differential
equation is the order of the highest order derivative present in the equation.
b2 gn sealifie ol A o apdoalill alsbaall Ay Al ) 4l Ciia Wlle agloaliil) cialad)
Alalzall
dy dy\*  d%

_— ) —y— X rd
3 + 4x (dx) de2 +e 3™ order DE

The expressions y', y", y"",y®, ..., y™ are often used to represent, respectively, the first,
second, third, fourth, . . ., nth derivatives of y with respect to the independent variable under

consideration.
Alall dsidan,. L, al ) Gl | S J0¥) cliisal e Il e el aladins Wle o3le) <l il
dixall juaiall xay

The degree of a differential equation is the power of the highest order derivative in
the equation.

ALl Alsbeall L aide oY 4] (s il oo 4pboalill alibad) da

d?y 3 dy
<@> + e sinx 2" order, 3™ degree DE
1
Py (1" nd d
E) +5 (a) +y =0 2"%order, 3™ degree DE

General solution for DE

A general solution of a differential equation in the unknown function y and the independent
variable x on the interval g is a function y(x) that satisfies the differential equation
identically for all x in .

OF Be A Rina 558 (a5 3l Jiine piie Lo daiaiy 4dy yre e 4l aglialidl Alsbaall Sl Jal
oyl G parm A bl Alslaall iai s uaiall Gl e it 4lla
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Example: Is y(x) = ¢, sin2x + ¢, cos2x, where ¢, and c, are arbitrary constants, a
solution of y" +4y=0

Differentiating y, we found y' = 2c¢, cos2x — 2¢, sin2x and y" = —4c; sin2x —
4c, cos2x. Here
y' + 4y = (—4c, sin2x — 4c, cos2x) +4(c, sin2x + ¢, cos2x)
= (—4cy + 4cy) sin2x +(—4c, + 4cy) cos2x

The y(x) = ¢, sin2x + ¢, cos2x satisfies the differential equation for all values of x and
is a solution on the interval (-co, o).

oatma e 5l Ja ity X ad (S 4ol lsbaal) (i3 sMe | allal

Example:

Determine whether y = x? — 1 is a solution of (y")* + y?=-1.

Note that the left side of the differential equation must be nonnegative for every real
function y(x) and any X, since it is the sum of terms raised to the second and fourth powers,
while the right side of the equation is negative. Since no function y(x) will satisfy this
equation, the given differential equation has no solutions. We see that some differential
equations have infinitely many solutions, whereas other differential equations have no
solutions. It is also possible that a differential equation has exactly one solution.

Sldg x Hﬁdﬁjé\:\s:\sﬂ\ Jsall IS8l yie (5650 o)) s oDle ) anlialdill alaleal) (pe oY) uilad) sadaaSla
Al g adalaall e ¥l e Sall O Lary 4 52 Gl (I g s e Aplialdill Alalaall (e (Ul J Y16 32l O
bialatl) Y aleall o i o)) S Aniilly Aslialinl) Aaleall s3] Ja () 585 Ol (San 4lla () dlal (S Sl
Ay Jlall e dana e dae gl aa g ol (S abizalédll J)sall Gy s (A Ll s 2a 0¥ 0580 () Sae

A8 a5 da Ll (5580 o) (See
Every particular solution of the differential equation has this general form. A few particular

solutions are: (a) y(x) = 5 sin2x — 3cos2x (choose ¢; =5and ¢, = —3), (b) y(X) =
sin2x (choose ¢c; = 1and ¢, = 0 ), and (c) y(x) = 0 (choose ¢; = 0 and ¢, = 0).

The general solution of a differential equation cannot always be expressed by a single
formula. As an example consider the differential equation y’'+4y=0, which has two

particular solutions and y(x) = 1/x and y=0.
omladBae @lla 56 o) GSaall e i asl g (bl ) et 330 o) (S Y plialal ddalaall slad) Ja)
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Initial-conditions and Boundary conditions dgaal) Ja g i) g 4d g¥) Ja g i)
Yl el Jaiati Al agl oW da g p8l (amy oy Ses agaliie V) apbalédll Calaall Jilie any A
Alalédl) aAlalaall aladl Jadl Cpan 48 prall 4y AT Cul ) 4 paat e aelid da g 4l 12a

Example: Find the solution of DE y' = 2x, that satisfy the condition y (2) =3.

y=x*+c
“3=4+c¢,—c=-1
The final solution is
y=x%2-1
First- order ordinary differential equations (¥ 41 ¢ 4galie ) ALl i aleal)
Standard form for a first-order differential equation in the unknown function y(x) is:
(o Y aa ) (e aalie V) aglialal] Alibeall 4pull) azall

,_dy
y'=—=fxy)

Or alternative form which is
M(X,Y)dx + N(x,y)dy =0
Separation of Variables &) yuriial) Juad
A separable-variable equation is one which may be written in the conventional form
Al Dapeally S5 ) (Sae Al geaiall Ol puriall Cld adalaadl

dy

2 = f@9() or flx)dx +g(y)dy =0
where f (X) and g (y) are functions of x and y respectively, including cases in which f (x) or
g(y) is simply a constant. Rearranging this equation so that the terms depending on x and

on y appear on opposite sides (i.e. are separated), and integrating, we obtain

sale ) s pallall ila sas) oSS o) (Sae Al sl ey sxd s gy) 5 F(X) &

aa JS Jalall alagl o e g daaal) Byl e g Jad ol g e e adiag aa S Jaa g lialadl) alabeal) s 3
b paxiall Juad 48k Jall el s

[ redx+ [ gordy =

Examplel: Find the solution for a differential equation following:
d
d_icl =x+xy

Sol.
17



d 2
f% = [ xdx= In(1+y) :x? +c,

2 2
1+y = exp(g +c)=A4 exp(g )

Where A = exp(c) and both ¢ and A are an arbitrary constant.

Example2: Find the solution for a differential equation following:

e*cosydx+ (1+e*)sinydy =0

j e* p +fsinyd B
1+e* x cosy y=

~ In(1+ e*) —In(cosy) = Inc

Sol.

(1+e%)
cosy

In =lInc, 1+e* =c(cosy)

Example3: Find the solution for a differential equation following:

dy 2cos2x
dx 342y

Sol.

f(3+2y)dy=f2c052x dx

3y +y% =sin2x + ¢

The particular solution it the condition y (0) = —1 is:
y x
f (3 + 2y)dy =f 2 cos 2x dx
-1 0

3y +y? 1Y, = sin2x ¥
y2+3y+2—sin2x =0

1
Y+ = E[_3 V1 +4sin2x|

H.w.
Q.1 Find the general solution of y'+eXy = e*y?
Q.2 Find the general solution of y' = 3x2%e~Y and the particular solution that

satisfies the condition y (0)=1.

18



Q.3 Find the solution of y' = e2**Y that has y = 0 when x =0.
Q.4 Find the general solution of x sin?yy’ = (x + 1)2.

Q.5 Solve y' = —2 x tany subject to the condition y = %when x=0.

1 X

. . 1
Q.6 Find the general solution of SY = am

Q.7 Find the general solution of cosec3xy’ = cos?y .

Q.8 Find the general solution of (1 — x?)y’ = x(y — a) = 0 where a is a constant.

Exact equations: Aalil) ¥ alaal)

The formula of exact differential equation is:
st Aalil) i) alaladll Axpa

of of
af (x,y) = aax +@ay =0
M(x,y)dx + N(x,y)dy =0

of of _
Where po M(x,y) and 3y N(x,y)

Test for exactness: If M (x, y) and N (X, y) are continuous functions and have continuous
first partial derivatives on some rectangle of the xy-plane, then exact equation is exact if
and only if

Agigall Lyl 4 5] el Lepal g o paina Jls2 o8 N(X, Y) 5 M (X, Y) <lS 130 el alsbaall 3 5a 5 sial
L ) ginty Jad 13) 5 i 03 s g 4lill allal) 13) | Xy-s sasall g3 CSldaioaal) (may Jaks V) 44 5l
;gt’ﬂ\
OM(x,y) _ON(x,)
dy ox

The solution of exact differential equation subject to the following rule:
FCoy) = [ MGy)dx+60)

The function G(y) can be found from 2—5 = N(x, y) by differentiating the equation above
with respect to y and equating to N (x, y).

) . et 3 , ,
@L@}m}ydw\_}a)\s\dﬂ:_‘d\ Gl A.Lu\ﬁé = N(x'y) a0l (S G(y) adjall
N (X y)
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Example: Given F(x,y) = x3siny + y%x then its partial derivatives are:
M(x,y) = Z—i = 3x%siny + y* and N (x,y) = Z—i = x3cosy+2yx
Therefore d F(x, y) = (3x%siny + y?) dx + (x3cosy+2yx) dy

Test the condition of exactness:
OM(x,y) ON(x,y)

dy  ox
3x%cosy + 2y = 3x*cosy + 2y
Example: Solve the differential equation idy — xy—zdx =0
Sol.

Test the exactness
ON(x,y) OM(x,y)
ax 0y

-1 -1
X2 xZ

1
F(x,y) = f;dx+G(y) =0

F(x,y) =%+ Gy =c

d —_a(y = =
SFEY) = (3460 =)= NEY)
1,d60) _ 1 _ d6W) _ _
;+d_y_x:_dy —O:G(y)—CZ

y
N =4c, =cg=>y=cx Wherec=c; — c
x

Example: Solve the differential equation (e** + 2xy?)dx + (cosy + 2x%y)dy = 0
Sol.
Test the exactness

OM(x,y) ON(x,y)
dy  ox

4xy = 4xy

F(x,y) = f(e‘“‘ +2xyH)dx +G(y) = ¢;

20



1
F(x,y) =Ze4x +x2y2+G(y) = ¢

4 — 4 (1 ax 2,,2 _ —
dyF(x,y)—dy(4e +x%y +G(y)—61) N(x,y)

2x2y+dc—(y) = cosy + 2x%y
dy
60D _ oo
dy d

G(y) =siny +c,
1 4 2.2 : 1 4 2 .
i ¥+ x°y° +siny +c2=61=>1e *+ x°y* +siny =c, wherec = ¢; — ¢,
H.W.

Q.1 Find the general solution of 2(y + 1)e*dx + 2(e* — 2y)dy =0
Q.2 Find the general solution of (2xy + 6x)dx + (x? + 4y3)dy = 0
Q.3 Find the general solution of (3x2 + ycosx)dx + (sinx — 4y3)dy = 0

x2
2(1+y?)

Q.4 Find the general solution of xtan™tydx + dy =0

Q.5 Find the general solution of (2x3 — 3x%y + y3) Z—z = 2x3 — 6x2%y + 3xy?

Q.6 Find the general solution of (y2cosx — sinx)dx + (2ysinx + 2)dy = 0

Inexact equations: integrating factors Jalsill Jalea sdaldl) & ddalaall

Equations that may be written in the form dapally S ) Sas allal)

M(x,y)dx + N(x,y)dy =0

oM (x,y) + ON(x,y)

But for which 3y "

Are known as inexact equations. However, the differential Mdx + Ndy can always be
made exact by multiplying by an integrating factor I(x, y), which obeys

iy (51 5 Bl Jalay L puim Al 53 4l ) Jgad ) San adlall 38 Jla IS e aali e allaay Ciyad

d0IM(x,y) OIN(x,y)
dy B 0x

I[M(x,y)dx + N(x,y)dy] =0

For an integrating factor that is a function of both x and y, i.e. =1 (X, y), there exists no
general method for finding it; in such cases it may sometimes be found by inspection. If,
however, an integrating factor exists that is a function of either x or y alone then equation

21



above can be solved to find it. For example, if we assume that the integrating factor is a
function of x alone, i.e. 1= 1(x), then equation reads
Q..Lu.n\_}..\aﬁl._;.)\ USAA‘ULAM VY &_5 _bﬁ\.;ﬁy aale 4.3:1_)L J;)E\) . ijwdﬁdb U}S:‘(ﬁﬂ‘ dALSﬂ\ d.ql&ﬂ

138 LY Leda Sae oMel aAlibaall (), b aal 5 il allaS JalS Jale 2 50 US 131 Jla IS e 131 o8 L
15 Asbaad 131 xS alaS Jalill Jale of L yidl 13 JEaS Jalall

M(xy) _ INGY)

+ N(x,y)—
dy dx () dx
Rearranging this expression, we find 2| peil) i )i sale b
1dl _ 1 (0M(xy) ON(xy) _
YE_N( dy dx )dX—f(X) dx

where we require f (x) also to be a function of x only; indeed, this provides a general method
of determining whether the integrating factor | is a function of x alone. This integrating
factor is then given by

gl ST Jale aailddle 48yl b gl IS (580 1aa g Jaid x Jalla sS85 ) F(X) sosomall oo das

a5
I = exp{[ f(x)dx}

Where fx) = %(Z—A; - Z—Z)

Similarly, if I = I(y) then
I=exp {J g(y)dy}

Where gly) = %(Z—z — 2—1\;)

Example: Solve the differential equation % = —5 — %

Sol.
Rearranging into the following form:

(4x + 3y?)dx + 2xydy = 0
Test the exactness

OM(x,y) ON(x,y)
dy  Ox

6y # 2y
So, the ODE is not exact in its present form.

However, we see that
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)

1 <6M 6N>

N\dy oax

2
x
a function of x alone.

Therefore, an integrating factor exists that is also a function of x and, ignoring arbitrary
constant, is given by

I(x) = exp {f% dx} = exp(2Inx) = x2

Multiplying the ODE above by this integrating factor, we obtain
(4x3 + 3x%y?)dx + 2x3ydy = 0
Test the exactness again

oM(x,y) ON(x,y)
dy ox

6x%y = 6x%y
Know the ODE is exact with this form.
F(x,y) = f(4x3 + 3x2yH)dx + G(y) = ¢,

Flo,y)=x*+x3y2+G(y) = ¢
dF(x,y) . dG(y)
— =2x

& y + O = N(x,y)
dF (x,y) ;. dG(y) 5
T— 2x y + = 2x y

. d6(y) _

W O:>G(y):C2

By inspection this integrates immediately to give the solution x* + y?x3 = c,
where c=c; + c;.
Example: Solve the differential equation (5xe™ + 2cos3x)y’ + (5¢™ — 3sin3x) = 0
Rearranging into the following form:
(5xe™ 4+ 2cos3x)dy + (5e™Y — 3sin3x)dx =0
Test the exactness
dM(x,y) ON(x,y)
dy dx

—5e7Y # 5e7Y — 6sin3x
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So, the ODE is not exact in its present form.

However, we see that

1 <6N BM) _ 5™ —6sin3x — (—5e™”)  10e™” —6sin3x

M B 5e~Y — 3sin3x ~ 5e¥—3sin3x '

dx  y
a function of y alone.

Therefore, an integrating factor exists that is also a function of y and, ignoring arbitrary
constant, is given by

I(y) = exp { f 2 dy} = exp(2y)

Multiplying the ODE above by this integrating factor, we obtain
(5xeY + 2cos3xe?’)dy + (5¢” — 3sin3xe?)dx = 0
Test the exactness again

OM(x,y) _ON(xy)
dy  Ox

5e¢Y — 6sin3xe?’ = 5eY — 6sin3xe?Y

Know the ODE is exact with this form.
F(x,y) = j(Sey — 3sin3xe?)dx +G(y) = ¢,

F(x,y) = 5xe¥ + cos3xe?” + G(y) = ¢;

dF(x,y) dG(y)
- 77 = y 2 2y 4 7 — N
& 5xeY + 2cos3xe?Y + &y x,y)
dF(x, aG
J = 5xeY + 2cos3xe?” + ﬂ = 5xeY 4 2cos3xe?Y
dy dy
dG(y)
o W = O f—t G(y) = C2

=~ 5xeY + cos3xe?” = ¢ where ¢ =c¢; — ¢,
Linear Equations

Linear first-order ODEs are a special case of inexact ODEs and can be written in the
conventional form

S ) Raa g aalill e A¥aleal) (e dald aAlls o (JgY) as all (e apdadldl apalie V) aslialadl) Gy alal)
Al axpally

dy B
—+P()y = Q)
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Such equations can be made exact by multiplying through by an appropriate integrating
factor which is always a function of x alone. An integrating factor I(x) must be such that

Jale hadd x Jadla Laila (558 (oA 5 anlin JalSS Jalas Ly pia DA (e 4l e () (S YAl 038
LS 055 O 1(X) e Jalsil)

d

d
102 + 1Py = - [1®y] = 160

which may then be integrated directly to give

1@w=fmﬂm@w

The required integrating factor 1(x) is determined by the first equality of a pervious
equation for above equation

oSk alslaall 428l Alalaall J oY1 3all 5 slosall Alacd 5 33y o sllaall JalSll ke

which gives the simple relation abaall dipall aad Sl

dl
—_—= = = {fP(x)dx}
Tx I(x)P(x) =I(x)=¢

Similarly, if I = I(y) then

dx

& T HOX=K®)

And
I(y) = eV HO)aY}
Example: Solve % + 2xy = 4x

Answer: The integrating factor is given by

I(X) — e{fP(x)dx} — e{f 2xdx} — ex2
Multiplying through the ODE by I(x) =e*”, and integrating, we have
exzy = 4Jxex2dx =2e"" +¢
The solution to the ODE is therefore given by
y=2+ ce™™’
Example: Solve the differential equation Z_i + 3x?%y = 6x2

Answer: The integrating factor is given by

I(x) = e PGax} — p{f3x%dx} — px®
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Multiplying both sides of the differential equation by e*’  we get

d
e*’ d_ic] +3x2eX’y = 6x2e*’
Or
3
dx

Integrating both sides, we have
eXy = f 6x2e* dx

e’y=2e"+coy=2+ce™
Example: Find the solution of the initial-value problem
x2y' +xy =1 x>0 y(1)=2

Answer: We must first divide both sides by the coefficient of x2 to put the differential
equation into standard form:
11
y+iy=2
The integrating factor is
1(x) = el PWax) = ol — ginx —

Multiplying both sides of the differential equation by x , we get
! + — 1 ( )I — 1
xy +y= . or (xy) = .
Then xy= [ idlenx+c

_ Inx+c

And also y=

X

Inl+c
1

Since y(1) = 2,we have 2 =

Therefore, the solution to the initial-value problem is

Inx + 2
y:

x
H.W.

Q.1 Solve the differential equation y'+2y=2¢*
Q.2 Solve the differential equation xy’+y=+x
Q.3 Solve the differential equation x2y’+2xy=cos?x
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Q.4 Solve the differential equation Z—z = xsin2x + ytanx, —n/2< x<m/2

Q.5 Solve the initial-value problem =% — 2tv = 3t%e%*, v(0) = 5

Q.6 Solve the initial-value problem xy’ =y + x2sinx, y(m) =0

Homogeneous Equations doilatiall dlaliil) Aataall

Homogeneous equations are ODESs that may be written in the form
JSAIL iSS f Saa Al apaliie) 4plialds alalas o dwdladiall Y Aleall

dy _M(xy) _ F(}’)

dx N(x,y) x

where M(x,y) and N(x,y) are homogeneous functions of the same degree. A function f(x,y)
is homogeneous of degree n if, for any A, it obeys
YN as )l Geanilaie o f(X,y) Al as el il anilaie 0 LSS B(XY) s A(XY) Sus
ki oS
fx, dy) = A"f (x,y)

For example, if A = x2y-xy? and B = x3+ y3 then we see that A and B are both homogeneous
functions of degree 3

The RHS of a homogeneous ODE can be written as a function of y/x. The equation can then be

solved by making the substitution y = vx so that.

A e dad o)) (Sae o3 Alalaadl | /X AdIAS GuSE () (Sae dssilaiall 4palie V1 4glialill adlabeall (e ¥ cailall
Coa Y S VX Gl gad

ay _ av_
dx—v+xdx F(v)

This is now a separable equation and can be integrated to give
bl JalS () (Saa 54 sumie lilas o () 028

=15

dy _y y
E le: | — == =
xample: Solve Ix x + tan (x)
Answer:
Substituting y = vx, we obtain
dv

vV+x—=7v+ tanv
dx

Cancelling v on both sides, rearranging and integrating gives
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dx
fcotvdv=17=lnx+c1

But

cosv dx )
f cotvdv = f — = | — = In(sinv) +c,
sinv X

so the solution to the ODE is y = xsin"t Ax, where A is a constant

Example: Solve the following differential equations
(x2 = 3y?)dx + 2xydy = 0
The coefficients of the differential equations are homogeneous, since for any a # 0
a’x? —3a’y*? a®x®—3a’y? x?—3y?
2(ax)(ay) 2a%xy 2xy

Substituting y = vx, we obtain
(x? — 3v2x?)dx + 2vx3dv + 2v%x%dx = 0
(x? — 3v2x? + 2v2%x?)dx + 2vx3dv =0
(x? —v%x%)dx + 2vx3dv =0
x2(1 —v?)dx + 2vx3dv = 0

separating variables

1 v
—dx+1_ 2dv=0
2v
172_1dv=;dx

Integrating

f 2v d _J‘ld
v2—1 vE x X

In(v?-1) = Inx + Inc
In(v?-1) = Incx
[v? — 1] = |cx]

replacing v = y/x,

7\ _ 2 2| — 2
|(;) —1| = |cx| or |y® — x| = |cx| x

Example: Solve the following differential equations
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Y y y .,
(xsmx ycos x) dx + xcos T dy=20
It is readily seen that the differential equation is homogeneous. Putting y = Xxv we obtain
(xsinv — xvcosv)dx + xcosv(vdx + xdv) = 0

xsinv dx + x*cosvdv =0 or sinvdx+ xcosvdv =0

separating variables

By integrating,
Inx + lnv = Inc or Incx = Insinv
~ Sinv = ¢cx
replacing v = y/X,
Ly
sin==cx
X
y = xsin~!(cx)

H.W.

_ xy+y?
===

Q.1 Find the general solution of Z—i

. . dy Y y
Q.2 Find the general solution of ==+ tan( )

x
. . dy Y
Q.3 Find the general solution of X—==y+xex
Q.4 Solve ny;i—z = x% + y?giventhaty =0atx=1

Q.5 Solve Z—z = % and find the particular solution wheny (1) =1

Isobaric equations g Y ¥ alaall
An isobaric ODE is a generalization of the homogeneous ODE and is of the form
wpally () 5S35 anilaiall GY el dale drpa o4 4 )b 0Y) 4dlic V) alalal) )

dy _Mxy)
dx N(x,y)

where the RHS is dimensionally consistent if y and dy are each given a weight m relative
to x and dx, i.e. if the substitution y = vx™ makes the equation separable.

y = VX Lage 13 ) JdX s X Al m ) GhailaadS dy 5y 13 sl Gude 06K Gan¥) il Cua
Al i allall mual
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: d_y_—_l( 2 E)
Example: Solve ot V4 + -

Answer: Rearranging we have
2
(yz + ;) dx + 2xydy =0

Giving y and dy the weight m and x and dx the weight 1, the sums of the powers in each
term on the LHS are 2m + 1, 0 and 2m + 1 respectively. These are equal if 2m+1 =0, i.e.

if m= —%. Substituting y = vx™ = vx 2, with the result that dy = x ~2 dv — gvx’y2 dx, we
obtain

dx
vdv+—=0
X

which is separable and integrated to give

Replacing v by y+/x, we obtain the solution %yz x+Inx =c.

Example: Solve 2x3y’ =1+ /1 + 4x2y

Answer: The weights of each term are 3 +(m-1),0,% (0,2 + m), if m =-2, every term has

the same weight. Substituting y = vx™ = vx 2, with the result that y’ = x~2v’ — 2vx>, we
obtain

2x3 (x7%2v' = 2vx73) =1+V1+4v
2xv' —4v =1++V1+4v

2xv' =14+4v+V1l+4v

dv
2x— =14+4v++V1+4v

dx
dv _dx
1+4v+vVI+4dv 2x
dv dx

Vitav(VItav+1) 2x
d(\/1+4v+1)_dx

2(Vi+4v+1) 2x
ln(\/1+4v+1)=lnx+c
Vi+4v+1

X

c
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J1+4x?y+1
=c

X

H.W.

Q.1Solve y2+ (1 +xy)y' =0

Q.2Solve x3y' —x%y+y?=0
Q.3Solve 2x2y' —x2y2+2xy+1=0
Q.4 Solve x3y' +4x*y+1=0
Q.5S0lve (x +2x%y)y"+ 2y +3xy?2 =0

Bernoulli’s equations

A Bernoulli differential equation is an equation of the form
aapally oS dilae & laldl 6y dalas

dy n
1 TPy =0y
where n denotes a real number. When n =1 or n = 0, a Bernoulli equation reduces to a
linear equation.
Ak aabee M J a9 dabaa 8 jia gl aalggsbuin Ladie g | s ae ) plin dus
To find the solution, change the dependent variable from y to z, where z = y*~" This gives
a differential equation in x and z that is linear, and can be solved using the integrating
factor method
sz X Yy alaliiailas Jaay 138 7z = P17 Cuny 7 Jly (e adiaal) i) i | Jall Sy
el Jale 43yl alasinly lala (San s addad () 5S3

Note: Dividing the above standard form by y" gives:
1 dy

Fa+P(x)y1‘” =Q(x)
) 1 dz _
i.e. (1_n)a+P(X)Z—Q(x)

2 _ 1 _p)y Y
(where we have used = (1-n)y -

Example: Solve y'+ xy = xy?
We make the substitution, namely z = y'2=y™!, from which follow
st deanis iy ol Ay o 83
1 L z'
y=- and y' = )
Substituting these equations into the differential equation, we obtain
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Jranid alalidl) alsbaall b Y alaall 038 jm go

z' x o x

+-—=— orz —xz=—x
- - - - Zz Z Zz -
This last equation is linear for the unknown function z(x).
.Z(X) 4 sena adlal aalad ) o Y| alaladll

The integrating factor is
I(x) = eJ(-0dx = g=x*/2
Multiplying the differential equation by I(x), we obtain
e */2 7 _ xe ¥ /27 = _ye=X"/2
Or
d 2 2
. —x“/2 — 4 p—X°/2
- - - dx (Ze ) xe
Upon integrating both sides of this last equation, we have
2 2
ze ¥ /2 =¥ /2 4 ¢
Whereupon
z(x) = ce*’/2 + 1
The solution of the original differential equation is then

_ 1 _ 1
Y T e 1
. dy — 23
Example: Solve x—ty=xy
Answer: Rearranging we have
dy 1
— t—y= 3
dx xy Y

We make the substitution, namely z = y' 3= y2, from which follow
e deaniy iy gail) dlany o 8

1 1z
y =-7 and J"=—§—3
72 72

Substituting these equations into the differential equation, we obtain
Jianid @Lau.\l\ Adalaall ‘_g OYalzall 22 g

12z 1 1 , z
53 t—1=3 orZ—ZE——Z
z2 Xxz2 z2

This last equation is linear for the unknown function z(x).
Z(X) A\JJQAA 4l Mja; GA UA\J\ alalaall

The integrating factor is

2 2 1
I(x) = ef(—z)dx — p2lnx — plnx™? _ .
Multiplying the differential equation by I(x), we obtain
z' z -

x2 x3  x2

Or
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d ;z -2
o)==
Upon integrating both sides of this last equation, we have
z 2
— == +c
X X
Whereupon
z(x) = 2x + cx?
The solution of the original differential equation is then

1 1
y == —
Z% V2x + cx?
H.W.
Wl pxys
Q.1 Solve dxd+ Sy =e'y
Q.2 Solve xﬁ +y = xy3
@2z, 02 2
Q.3 Solve —. T -y =—x"cosxy 2
d_y _ (4x+5) 3
Q.4 Solve 2 ax +tanxy = ——
Q.5 Solve xﬁ +y = y*x?Inx

Problems and application

Differential equations play a prominent role in many disciplines including engineering,
physics, economics and biology.

ela¥) e 5 sl g ey 5l 5 Auaigh) Gl 8 Loy Clanadill (e 3l 313550 1) 53 Canli A plialisll i alaall
Differential equations are physics, almost all differential equations are derived for physics

to model physical problems.
Al b JSLG lSLaal oy judl) it agidia o aslialadll Yl e el 5l oo anlialal) Y aladl)

Example 1: Exponential growth and decay Dlaaa) g ) galll

The rate at which new organisms are produced (dx/dt) is proportional to the number that

are already there, with constant of proportionality a. So the differential equation is:

O Cre ol Sl g ae X 03 s sall LIS 20 ae iy (dX/E) o CLES 2L ) gad Jana ()
oh el agd aplalitl) alibaal) angiilly

dx
a
This differential equation can be solved by separable the variables.
dx =« dt
dx
dx _ f x dt
dx



Inx =at+c
The constant(s) of integration are usually found from the boundary conditions:
which in this case means from knowledge of x at some value of t. For this
example, suppose we know that, at time t = 0, X = Xo. Substitution gives
X:\A:\EAAJM d);u,o‘d\;j\ ah@JJ @JJ.\Q\L})&J\ Md%wﬁd& oJ\;,g\ (53:1(_5,4\5.13\ t_uu
bl X = Xo Aad QI t=0 (o) die o e Ll iyl JEall Qi ot J 4z 4l
Inx,=a*0+c
~c=lnx,
The final equation is
X
Inx = at + Inx, = Inx — Inx, = at = In (x_> = at
o
X = xoeat
Example2: Terminal velocity stiial) ds
Using Newton’s law, we model a mass m free falling under gravity but with air
resistance. We assume that the force of air resistance is proportional to the speed of the
mass and opposes the direction of motion.
O el Bl dsa s ae OSs Anilall S Cnd o ja B ) gy Al T i Sla (S (e 538 pladiuly

Near the surface of the Earth, the force of gravity is approximately constant and is given

by —mg, with g = 9.8 m/s? the usual gravitational acceleration. The force of air resistance

is modeled by —kv, where v is the vertical velocity of the mass and k is a positive constant.

When the mass is falling, v < 0 and the force of air resistance is positive, pointing upward

and opposing the motion. The total force on the mass is therefore given by F = —mg—kv.

With F = ma and a = dv/dt, we obtain the differential equation

i Jics ) g = 0.8 M/s? ge —mQ Al 2 (ani s 4BlE Ly ji5 (5S35 4ndlall 38 ()Y rhans 8

Culs ga K5 ALSH 43 panl) de pud) Jiahy G Ky A 51 SUad o1 54l A gl Al 53 4l 5 1 ailal)

olaiD dusSlas o) sy s (Ao V) () jadiig dam ge (o8 ol sell Aaglia s 5 v <0 L Al Ladie | x5

Qs .a=dv/dt sF=mage F=—mg—kv aabaalls juai ) (Sae i€l e adaliadl) 4K 3 8l S jal)
alealal) alsladll

dv
mE = —-mg — kv
The terminal velocity v.. of the mass is defined as the asymptotic velocity after air
resistance balances the gravitational force. When the mass is at terminal velocity, % =0so0

that
) o AL Lo 5 AMall 3 58 pe Jolaii o) sgll Ao glia amy 4gny jEi A juS e al€l v, giiall Aoy

d JUT
OsS d—:ZO el de
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The approach to the terminal velocity of a mass initially at rest is obtained by solving the
differential equation of mass falling with initial condition v(0) = 0.
g5 Ja i ae adailod) ALl aglaliil) alsbeall Jay J geanll 25y () Sl i |ty ALSU giitall e pudl] oy 55
v0)=0
The equation is both linear and separable, and | solve by separating variables.
QU—""M\ Jealy Ja3 ) (San g, Al geaia g dnhad 4 alilaall

dt
f mg+kv f

m (mg+kv)
_n —
k mg
kv _kt
1+—=e m
mg
mg 1 _kt
v=-r(1-em)

Therefore, v = v..(1-e ™), and v approaches v.. as the exponential term decays to zero.
bl ) deail Jaii 4pu¥) 43Sl laie Ladie Gy vy, 5 V= Vo(/—e M) el
As an example, a skydiver of mass m = 100 kg with his parachute closed may have a
terminal velocity of 200 km/hr. With
Jind 26 200 Km/hr ¢ de s lliaad o (San ddlae allae aam = 100 kg LS allagy a8l JES
=)
g = (9.8m/s?) (1073 km/m) (60s/min)? (60 min/hr)? = 127,008 km/hr?,

one obtains from the terminal velocity equation, k = 63,504 kg/hr. One-half of the terminal
velocity for free-fall (100 km/hr) is therefore attained when (1—e Y™ = 1/2, or t = m In2/k
~ 4 sec. Approximately 95% of the terminal velocity (190 km/hr) is attained after 17 sec.
Al L giall _giall Aoy G i K calil) dad e giiall Aoy Alilaa (e J sandl (Sas
seiiall de yuw (095% Ly dit=m In2/k =~ 4 sec sI(1—e V™) = 1/2 Laxie Lee sl (Ses (100 km/hr)

Al 7 e lge sl Ka0
Example 3: Application to Electric Circuits
we considered the simple electric circuit shown in R
Figure: ose WS a4l s (a VVV
Jsaly
®
—0
switch

An electromotive force (usually a battery or generator) produces a voltage E (t) of volts
(V) and a current | (t) of amperes (A) at time. The circuit also contains a resistor with a
resistance R of ohms (Q2 ) and an inductor with an inductance L of henries (H).

o g 4a sia L (g sind o ilall 028  (me (e n L g 98 i (Al ) 4g U Bale ) 4y jgS Andlaz 8
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Ohm’s Law gives the drop in voltage due to the resistor as RI. The voltage drop due to
the inductor is L(dl/dt). One of Kirchhoff’s laws says that the sum of the voltage drops is
equal to the supplied voltage E (t). Thus, we have
Ol 8 aal L (dI/dt) 5o Call Cale o agall Hlasil RT S dagliall ani agally jlasi¥) ary a5l o 518
el 8L o el Al sdl) (5 sbun 2gall Hlasdl ¢ sena o) e (aly a5l S

L R = B
It =E®)

which is a first-order linear differential equation. The solution gives the current at time
A ey die il dad  axy alaleall o3gd Jall | (I W) s jall (e aplad 4lalds alalas oo Al

Suppose that in the simple circuit of Figure above the resistance is 12 Q and the inductance

is 4 H. If a battery gives a constant voltage of 60 V and the switch is closed when t=0 so

the current starts with 1 (0) =0, find (a) I (t), (b) the current after 1 s, and (c) the limiting

value of the current.

BA haiag el QS 1Y) 4AH Gleding 12 Q) e glia pe odle | JSAIE LS adapun 41l 5gS 3 )00 iy

o) g aniliaay Ll (1) 2 1 (0) =0 e Jaw il AN =0 (e die 3lad s Al 5 60 V 6ylade il dea
il saaaall 4l

a) If we put L=4H, R=12, and E(t)= 60 in the Kirchhoff’s laws that defined in the

differential equation above, we obtain the initial-value problem
, oo ) aglialall alabaally Ca yrall Co g S () 518 8 2gall (355 4 gl 5 Caall af Lica s 13)

4dl+121—60 1(0)=0
dt B -
Or
d’+—31——15 1(0) =0
dt B B

Multiplying by the integrating factor e/ 34t = 3t | we get

dl
e3t — + 3le3t = 15¢e3¢
dt

d(Ie3") = 153
le3t = f 15e3t dt =5e3t +C
I(t)= 5+ Ce™3
Since | (0)=0, we have 5+C=0, so C=-5 and
I(t) = 5(1-—5e73Y)

(b) After 1 second the current is
I(1)= 5(1—-5e3)=~475A4

(©) ﬁm]@)=JMl5ﬂ—5€&)
=5-— Stlim e~ 3t
=5-0=5
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Higher-degree first-order equations

The differential equation of first degree can write as a formula:
Al Fapal) 321 V) As ) e dglialil] alaledll

dy
Frygp) =0
Or
dy
F = = —
(x,y,p) =0, wherep In

Higher-degree first-order equations can be written as F(x,y,dy/dx) = 0. The most general
standard form is
st e il JSal | i€ ) (S Llad) il all g ) 40 (e agdialinl) alaladll

P+ an1 ()P 4+ a (x, y)p + a,(x,y) =0

1. Equations soluble for p
Sometime the LHS of Equation above can be factorized into
S At o) San odle ) adabaall (e eV ailall sl iany
p-F)p—-F)..p—E)=0
where Fi = Fi (X,y). We are then left with solving the n first-degree equations p = Fi (X,y).
Writing the solutions to these first-degree equations as Gi (x, y) = 0, the general solution
to Equation above is given by the product

dalad) dnall 3l adabeall 03l dadl (655 0 A o (W) 4l (e 4pliald adabeall s aa B35 oS
el

61(9‘»}’)62(95:3’) Gn(xry) = O

Examplel: Solve ()3 —(y)?2 -2y =0
Sol:
Let p = y’, Then equation rewrite as
p’—p*—2p=0
p(p—2)(p+1) =0
cp=0—>y=c
p=2—>y=2x+c,
p=—1—>oy=-x+c3
So the general solation as
—c)y—2x—c))(y+x—¢c3)=0
Since, the differential equation is from 1% order, so the general solution must have only
one arbitrary constant.
A aal 5 g A Gl agal bl Leda ) 6K o) angy Sl W) A )1 (e A aslialél] adalaall ) La

Y- -2x—c)(y+x—-¢c)=0
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Example2: Solve (x3 +x% +x+ 1)p? — (3x%* +2x+ 1)yp —2xy*> =0
Sol.
The equation may be factorized to give
[(x + Dp —y][(x* + Dp —2xy] =0
Turn each bracket in turn we have

dy
(x+1) V= 0
2 ay _

(x*+1) - 2xy=0

Which can give the solution
y—cx+1)=0&y—c(x?+1)=0
So, the general solution is
[y —ctx+ D]y —c(x*+ 1] =0

2. Equations soluble for x
Equations that can be solved for x, i.e. such that they may be written in the form
pally 4 51 (5K 38 Ll g ing Lee ¢ xx J leds S ) ¥ alal)
x=F(y,p)
can be reduced to first-degree first-order equations in p by differentiating both sides with
respect to y, so that
Cuny Y danilly (b plall GEEEY) A Ga P b sV il e ddibae I peaias () (S

dx_l_dF_l_aFap
dy p dy dpdy
This results in an equation of the form G(y, p) = 0, which can be used together with x =
F(y,p) toeliminate p and give the general solution. Note that often a singular solution to
the equation will be found at the same time.
Jdall L_;i:ud}pg_m;l X = F(y’p) bue\.lilﬁo\ OSMLF?]\) ,G(y'p) = OM\.}M\J@@S&]\
gl ity alibaall Gald i dlag) (e Llle 43 UsaY lal)
Examplel: Solve 6y?p? +3xp—y =0
Sol.
This equation can be solved for x explicitly to give 3x =(y/p) —6y?p. Differentiating both
sides with respect to y, we find
dhaniy |y 4illy b Hhall IS el 3x =(y/p) —6Y2p hxi0d iy XJ dad Ol (Sae alaladl o3a
s

which factorizes to give bl Jlas )

1+ 2(2 + —1)_—
( 6yp) p yl 0
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Setting the factor containing dp/dy equal to zero gives a first-degree first-order equation in
p, which may be solved to give py? = c. Substituting for p in the differential equation given
then yields the general solution of this equation
a3 o (s s P J Y1 Ansll (e Alales oy | s I (5 sbose dp/ly (5 skim g3 2l pia s
adalaall 03 ale Ja ot aplialiil) alabaal) 8 4l (s a5 py? = € il
y3 = 3cx + 6¢2
If we now consider the first factor in the primary solution of the differential equation after
factories, we find 6p?y = —1 as a possible solution. Substituting for p in the differential
equation we find the singular solution
Jaina JaS B2y = —1 an o Jalaill amy agloalill alsbaall S Jall 3 Jg¥1 Jalad) liie Y LA 13)
2kl Jal) aas aplaladll Adslaall A Gisatag
8y3+3x2=0
Note that the singular solution contains no arbitrary constants and cannot be found from

the general solution the differential equation by any choice of the constant c.
alill a5l Loaly aploalill alsbaall aball Jall e sala) Sa¥ 5 (5 s il g giny¥ i) Jall o sy

Solution method. Write the equation in the form x = F(y, p) and differentiate both sides
with respect to y. Rearrange the resulting equation into the form G(y,p)=0 , which can be
used together with the original ODE to eliminate p and so give the general solution. If
G(y,p) can be factorized then the factor containing dp/dy should be used to eliminate p and
give the general solution. Using the other factors in this fashion will instead lead to
singular solutions.
wpally 4ailill Al s S ae) x = F(y,p) Jamall gl 31l daually dalaall i) :dal) 43, )l
Al Jall e seanl) 138 5 p slagiasY Laliie V) bl alslaall we aladind o) (Sase S35 G(y,p)=0
Alasiuly aledl Jadl elac /g Sagind alosin o cany dpldy ossisg sl asdl o3| UIai ) (Sae G(y,p) 1
Lo pdio Jola (N B (o Y (50 s 48y yhal) gudis G ax])

1. Equations soluble fory
Equations that can be solved for y, i.e. such that they may be written in the form
analls 4 5 () 65 38 L Cms i Len ¢ xr J Ll S Al ¥ aladl)
y =F(xp)
can be reduced to first-degree first-order equations in p by differentiating both sides with
respect to x, so that
Cumy X Auailly (4 Sl GEEYT JYA e P sV Al e alilae ) i ) (S

dy 1 dF O0Fodp
dx p dx  opox
This results in an equation of the form G(x, p) = 0, which can be used together with y =
F(x,p) toeliminate p and give the general solution. Note that often a singular solution to

the equation will be found at the same time.
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dall Jasisp sl y = F(x, p) e alasind ¢ (Sae (Al s G, p) = 0 4imall ally & angill
(gl iy alalaall pald s dlag) See Ulle 45l UaaY Lla)
Examplel: Solve xp? +2xp—y =0
Sol.
This equation can be solved for x explicitly to give y =xp? +2xp. Differentiating both
sides with respect to y, we find
e Jeanis ) X Aailly (b Hlall OIS BELEL Y =xp? +2XP ] iy X dad O (Sae Adabaall 02

dy dp =, dp
a—p—prdx+p +2xdx+2p
which factorizes to give bl Jlas A
dp
1 2x—) =
(p + )(p+ xdx) 0

To obtain the general solution of the differential equation, we first consider the factor
containing dp/dx. This first-degree first-order equation in p has the solution xp? = ¢, which
we then use to eliminate p from the differential equation. We therefore find that the general
solution to the differential equation is
SV am ol e bl Alslaall dp/dX (s sing @ Jelad) Y ) adind cad aplalidl) alibeall ale s sy
a3 A at Agdalial) Alslaall o slain dAeladiod Cige 535 xp2 = ¢ Jall cllici p J 5V 4 all
& aslialdl) adilaall alad) Jall o)
(y—c)? = 4cx.
If we now consider the first factor in the equation above, we find this has the simple
solution p =—1. Substituting this into the differential equation then gives
Alaall (msmy p =7 Jam Ja lliad L) ani g odle ) alabaally J oW1 Jaball Jall & ains () (i 13)
bl alalid)
x+y=0
which is a singular solution to the differential equation.
Aslaladl) alalaall 2 jiie Ja 58 (31
Clairaut’s equation S ls dlslea

The Clairaut’s equation has the form
4.:"_.:*4.// Lg_:.?./ g J.u.K ADleo

y=px+F()
and is therefore a special case of equations soluble for vy,
Y J Sl ALl Aslaall o Leali s Sl 4
Differentiating Equation above with respect to x, we find
A Xd 4l oSle ) Adalaa) (3laid)
dy dp dFdp dp (dF
—=p=p+x—+——=—(—+x)=0
dx pP=p xdx dx dx dx(dx x>
Considering first the factor containing dp/dx, we find
an3 dp/dX (s sine g JsY) sl e YU YL
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2
Z—Z:Z—;:Ozy:clx+cz
Since p = dy/dx = cy, if we substitute Equation above into Clairaut’s equation, we find
X+ cy; =cix+ F(cp)

Therefore, the constant c2 is given by F(c1), and the general solution to Clairaut’s
equation

y=cx+F(c)
i.e. the general solution to Clairaut’s equation can be obtained by replacing p in the ODE
by the arbitrary constant ci. Now considering the second factor in the derivative Equation
of Clairaut’s equation with respect to x, also have

X ox=0
dx ' F T

which has the form G(x,p) = 0. This relation may be used to eliminate p from the
Clairaut’s equation to give a singular solution.

Example: Solve
y =px+p’
Sol.
According to the clarification above, the general solution is y = cx+co.
But from the second part of solution that explain above, we also have
2p+x = 0=p =—X/2.
Substituting this into Equation of the question, we find the singular solution
X% +4y = 0.

Higher- order ordinary differential equations  \lall il (e dgaliie V) Aglaldil) e staal)
Higher-order ordinary differential equations are expressions that involve derivatives other
than the first and, as you might expect, their properties are different to those of first-order
ODEs.
QU gt LS gV e Gldilia (ggiad (Al Gl juadl) oo Llall GOl e apalie V) aplialall e alal)
oY aa Al e analiie V) aglialatll Y alaall e alidd Lpal sA

A linear ODE of general order n has the form

AUl dapal) Gllia ) daladl s Al e ddadl) 4pliic V) 4lalall Y aled)

d"y "y dy
an(x) T T An_1(x) Tt ai(x) et a,(x)y = f(x)

If f(x) = 0 then the equation is called homogeneous; otherwise it is inhomogeneous. The
general solution to Equation above will contain n arbitrary constants
L“;)'jaﬁg_'q)uoﬁc\dﬁl.u;ﬂe\.d\ dall auilaia je ) Sio g rauailaie e aiaalaall ) f(x) = O:d\;bﬁ
ALY Cul 8 e
For an n-th order homogeneous linear equation with constant coefficients:
A el e g N (e Adlatia aplad alaladl
ay™ +a, 1y V4t a,y +ay +a,y=0, a,#0
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It has a general solution of the form arpallale Ja gl S
Y=Yt 6y, + ot Cro1Yn-1 T Cpdn

where y1, Yo, ..., Ya—1, ¥n are any n linearly independent solutions of the equation. (Thus,

they form a set of fundamental solutions of the differential equation.) The linear

independence of those solutions can be determined by their Wronskian.

ie., W(y1, Y2, ..., Yn-1, Yn)(t) # 0.

(Aalalil) alibeall apulad) Jglall a de gana JSE Lild @l alslaall Ja et aliiveall 4ghadll Jl sl Cua
LS gyl Aad) 50 st (Sae Jslall odg] aliindll 4pdadll J) all

Such a set of linearly independent solutions, and therefore, a general solution of the

equation, can be found by first solving the differential equations.

Ja Y gl ddand 5 Wadlay) (See alabaal) o3gd alall Jall | lldy aliivaall agbaall Jglall o e sanall 028 Jia

o ysaall Alaliil] alaleall

Note 1: In order to determine the n unknown coefficients C;, each n-th order equation

requires a set of n initial conditions in an initial value problem: y(to) = yo, y'(to) = y'o,

y"(to)=y"o, and y " D(to) =y "o,

Al ¥l g Al (e de gana bl 4 )l (e adalae S Cj Al geaall Jal gl e alag) o) e 01 4daadla

Al A ) 4l

Note 2: The Wronskian W(y1, 2, ..., Ya-1, Yn)(t) is defined to be the determinant of the

following n x n matrix

Adlll N x N 48 saiaall dasall oSl Ca ey S gyl 12 adaadla
[ V1 Y2 o Y

Y{ yé 4
W(y1,y2, ...,yn) =\ . .}’2 e .yn
[y Iy )
D Al el iy s
D_d Dz—d2 D3—d3 Dn_dn
- dx’ dx?’  dx? dx™
Ex:
d dz
3x — 3% — 3,3 2 _3x _ 3% _ a.3
De>* ax 3e*?, D<e>* Ex_gex

AN Al e Acuilaial) Agdadl) Abalinl) Adalaall Jgla (al 53
) IS (585 Al A H (e dilaial) apdadll alialal) Adalaal) o) i i
y'+ay +a,y =0
Ol e, s bl Laay) Jay = ¢y + ¢y, O odle) ddalaall (ald Ja gy 00 IS OIS 1)
W (yy,y,) # 0 13 kg3l g % # ¢ OSSN Lhad Miie oMo ) Abileall yy y, oMl 1
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1) Ly 135y, = cy; W) 22 =0 S 1) ki gladise odle) Al y, y, oSl 2
Ty

1

W(yyy2) =0
plad) Jad) iy s
OBl ¢, s | Alaladll plall Jall Jiay Yy = €1y + €y, OB Alblaall (s Gl yy o IS 1A
ks
y' a1y’ azy o Al o s

Oalag, aydes
Ll cplitine ppald e bl Jla alsledl Gl ) e gonall
i 1 Cus odle) Ailaall da y = e lasial Jglas
(D?+a;D+ay)y=0 5y geally alaladll puzad
s dall dally (i g2 &5
Dy — De)Lx — /1€)Lx, Dzy — Delx — Azelx

Al sre Laall libaal e Joans

A+ a1 +ay)er™ =0
O5S8 | Hha (5 by O Gang odle ) alilaall o S Gkl 13 @A £ 0 ol s

P +adl+a,)=0

Abaladl (03 8l Ledle J sl (Say s (auxiliary equation) sasbuall s juaal) ddabaally Alabaall 038 a5

D e Yu ) pasndliy D Jisdl AV 4laY)

G Ay, Ay O W Jull (A 4l as il (e ) a5 Alilas e o jlie alalaall 028
—-b+Vb2-4ac

2a

A, =
3Vl ED Legd o) 3all ol
A #E Ay odliae gldss 1
A = Ay Ohsbade Jlias 2
S e 3
LOWNS L LEES 5 Jraal) Adalaall oyl da s ey sl 1
Lbd OlEhe g dlilaall Glald (Bla Gy yy = ey, = e2X lass A # 4, O )
o gally (558 aladl Jall 8 Ul
y = c,eM* 4 ce*
Oodal gl ¢ | o
Examplel: Find the general solution for the following equation
y'+3y'—4y =0
Sol.
Rewrite the equation by using the operator D
(D?2+3D —4)y=0
We suppose that y = e?* is a solution for the equation.
So, the auxiliary equation will be
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(A+312-4)=0
A+4)A1-1) =0
So, 1 = —4, A =1 are the roots of the auxiliary equation.
The general solution will be
y =cre ™ + ce*
Example2: Find the general solution for the following equation
2y" —=3y"' =0
Sol.
Rewrite the equation by using the operator D
(2D?*-3D)y =0
We suppose that y = e?* is a solution for the equation.
So, the auxiliary equation will be
(222-31)=0
A22-3)=0
So, 1=0, A= 3/2 are the roots of the auxiliary equation.

The general solution will be
3 3
y =ce% + c,e2* = ¢; + c,e2*

LObsbedia GLEIES 5 Jaaall Adalaall o)) jda o Anilil) Al

G Ay, = ef2X Jalyad e SV dall y; = e¥ o Sadallomn 8 4 =1, o) @
sl S Sy, = xet?¥ iy, = eM¥ Jalh hie ey, LAldace
Y1 djy\ dﬂ\-’u)‘*

Al drpeally adabaall alall Jall () 5S5 6lls le

)le llx

y = c1e + cyxe
B

y = cle’llx + cze’llx

Examplel: Find the general solution for the following equation
y'—4y'+4y =0
Sol.
Rewrite the equation by using the operator D
(D2 —4D +4)y=0
We suppose that y = e?* is a solution for the equation.
So, the auxiliary equation will be
(A2—-42+4)=0
1-2)2=0
So, A = 2,2 are the roots of the auxiliary equation.
The general solution will be
y = ce?* + cxe?*
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Example2: Find the general solution for the following equation
y'=2y"+y=0
Sol.
Rewrite the equation by using the operator D
(D?-2D+ 1)y =0
We suppose that y = e?* is a solution for the equation.
So, the auxiliary equation will be
(A2=22+1)=0
A-1%2=0
So, A =1,1 are the roots of the auxiliary equation.
The general solution will be
y =ce* + cxe*

LS a0 jnaal) ddalaal) | da ABIEY Alall 3
e oS Ay, AYI NI E =/ -1 3 ) = a4 if <SS e alaall (553 ) IS
B#0Es (B )4, =a—ifiosa

el dall S5 2, # 1, édlb e
y = Ale(a+iﬁ)x +Aze(a—iﬁ)x
Oboal gl A4, Ay Sus
Asally sl Jall iy o) (S
y = e*[c;cosBx + cysinfx]
.C2 = l(Al _Az) 5] Cl :Al +A2 ‘L\";

Examplel: Find the general solution for the following equation
y'+2y"+5y=0
Sol.
Rewrite the equation by using the operator D
(D?+2D +5)y=0
We suppose that y = e?* is a solution for the equation.
So, the auxiliary equation will be
(A2 +22+5)=0
L _T2EVa-20
2

=—-1+2i

The general solution will be
y = e *[cicos2x + c,5in2x]
Example.2: Find the general solution for the following equation
y'+9y =0
Sol.
Rewrite the equation by using the operator D
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(D2 +9)y=0
We suppose that y = e?* is a solution for the equation.
So, the auxiliary equation will be
A2+9) =0
So, A == 3i are the roots of the auxiliary equation.
The general solution will be

Y = ¢1€083x + ¢,Sin3x

Homogeneous linear differential equations of order n with constant coefficients.
ALY cllaall @i AN e dcladial) Agdadl) ALalitl) i alaall
N 48l e YAl Ao alil) 45 )l e Yl Jag aalal) Zalal) SV avand Sy
aoy™ +ayy™ ™V + ot ay 5y a1y +ayy =0
saeluuall aliladl) ) €8 slasall Alilaall Sa Y = ¥ () i i
A A" + A"+ et ay Y + a1y +a,y =0
/11)/12) -"12-71 JJM‘(;C ML@-.‘AL;J‘
sl Gl Al e 4dlidl) Jglall e Joani
(assdael) Ay # A, #F o E A, SN ]
elall Jall s
y = cieM* + c e?2¥ + o 4 cpetn®
Sl ek Se sl aal s agiia sl ppea culS D12
UJS"..?L’J‘ dﬁj‘ Uu Al :/12 :"':Ak’ Ak_lrf:"' ;t;{n
y = (c1+c2x + o+ gkt )e’llx + CppreMer¥ + o4 cpetn®
A ja dlae) sdallculS 13 3
/11=lz=/13=a+iﬁ
A 5 438
A4=15=A6=a_iﬁ
Dstall el bl alall Jall 05y
y = e®[(c; + cx + c3x%)cosPx + (¢4 + csx + cex?)sinfx]

Examplel: Find the solution of the differential equation

d’y d*y dy

T2 + 2 i 3 T 0
that satisfy the condition;y(0) = 4,y'(0) = 8,y"(0) = —4.
Sol.
Rewrite the equation by using the operator D

(D3 +2D*-3D)y =0

We suppose that y = e?* is a solution for the equation.
So, the auxiliary equation will be
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(B +222 -3y =0
So, 4 =0,1,—3 are the roots of the auxiliary equation.
The general solution will be
y =cy+ ce* + cze3*
Gy o gl giay (o3 Jall Al
y' = c,e¥ —3cze3*
y" = cye* + 9cze™3%
ooe) ¥ alaall & anlaig¥) Lo gyl e (s sailly
4 =cy+cy+c3, y(0) =4
8 =c, —3cs, y'(0) =8
—4 = ¢, + 9c¢3, y"(0) =—4

€1 =0, =5,¢c3 = —1 ol sl 2 dlay) Sy o3le ) YLl Jay
9a aalialaill alalaalll Jall o <

X -3x

y=>5e*—e
Example2: Find the general solution of the differential equation
y'"+2y"—y' =2y =0
Rewrite the equation by using the operator D
(D3 +2D2-D—-2)y=0
We suppose that y = e?* is a solution for the equation.
So, the auxiliary equation will be
(AB+222+21-2)y=0
APA+2)—-A+2)=0
QA+2)1+1DH)(A-1)=0

So, 1 =1,—1,—2 are the roots of the auxiliary equation.
The general solution will be

y =ce* + e+ cge™

Example3: Find the general solution of the differential equation
yt*—=2y3+y2=0
Rewrite the equation by using the operator D
(D*—2D%*+D?)y =0
We suppose that y = e?* is a solution for the equation.
So, the auxiliary equation will be
APA2=-22+1)=0
A2A-1%2=0
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So, 4 =0,0,1,1 are the roots of the auxiliary equation.
The general solution will be
Yy =c +cx+ (c3+ cyx)e”

Example4: Find the general solution of the differential equation
yt+2y3+2y2=0
Rewrite the equation by using the operator D
(D*+ D3 +2D)y =0
We suppose that y = e?* is a solution for the equation.
So, the auxiliary equation will be
A*+23+219)y=0
APA2+21+2)=0
A+2)A+1)(1-1)=0

So, A =1,—1,—2 are the roots of the auxiliary equation.
The general solution will be

y =ce* + e+ cgeH

H.W.

Group A: Find the general solution of each equation.
Q.1: y*—y=0
Q.2: y®—y=0
Q.3: y3+27y =0
Q.4 y3+25y'=0
Q.5: y3—3y2—-9—-y'+13y =0
Q.6: y*—3y2—4y =0
Q.7: y*—18y2+81y =0
Q.s: yt—=2y34+2y2-2y"+y=0
Q.9: y>—3y*+3y3—y2=0
Q.10:  y>+5y*+10y>+10y2+5y'+y=0
Q.11 y5+2y*+5y3=0
Q.12: y5+5y* +10y3 +10y2 + 5y’ +y =0

Group B: Solve each initial value problem.

Q.1: y3+4y?2 -5y =0 y(0)=4,y'(0) =7,y"(0) = 23.

Q.2: y3+3y2+3y'+y=0 y(0)=7,9'(0)=-7,"(0) = 11.

Q.3: y*—10y2+9y =0 y(0)=5,y'(0) =—1,y"(0) = 21,y3(0) = —49
Q.4: y*+13y2+36y=0 y(0)=0,y'(0) =-3,y"(0) =5,y3(0) = -3
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Nonhomogeneous linear differential equations of order n with constant coefficients.
ALEN claleal)l @A Al e diladial) S dskadl) dubaldil) il aleal)
Aoy ™ + ay ™V et @y 5y + gy + any = f(x)
If, however, the equation has f(x) # 0 (i.e. it is inhomogeneous). Then, the general
solution of this type of equation is:
s p Alilaadl (e g il o] alall Jall 13 Aoy Ll iy lae f(x) 7 0 llias aliladl 13
Y =y (x) + ¥, (%)
Where y.(x) or can be write as yj,(x)(henceforth called the homogeneous or
complementary solution) represent the general solution of the associated homogeneous
equation. y,, (x) denote any particular solution of Equation above.
Aalaall alall Jadl Jiai (JaSe a5l dssilaio cansi lacbia s (Y1 (0) 7y (00) 1S S5 ) (San )y () s
ole ) Adalaall fpma Ja Y s Vp (x) Adabeall 03gn adasi yall ailaidll
The general solution of nonhomogeneous linear differential equation is the sum of the
homogeneous and particular solution.
el Jall 5 anilaic Alibedd Jall ¢ sane s dnilaiall e aphall 4ol alibed alall Jal)
Finding the particular solution or particular integral y, (x)
Ol JalSHll o) el Jad) Al
There is no generally applicable method for finding the particular integral y, (x). but, for
linear ODEs with constant coefficients, y,(x) can often be found by inspection or by
assuming a parameterized form similar to f(x).
S abaall 3 aglad apalie ) aglalis alibadd (15 ) () el JalSl) gy (adill alilh adle 48, 5l 2a 53Y
(o) AN 4giliie Cdlalae A (yal ) Adasl gy ) Rl Aad 53 Ladlag) (See Llle ) () 43
The method used to solve non homogeneous linear ODE, sometimes called the method of
undetermined coefficients f(x). If contains only polynomial, exponential, or sine and
cosine terms then, by assuming a trial function for y,(x) of similar form but one which
contains a number of undetermined parameters and substituting this trial function into
homogeneous linear ODE part, the parameters can be found and y, (x) deduced. Standard
trial functions are as follows.
sannal ye Jolsall 4l e di la¥) G anilaiall e aphadl) alalisl) ¥ aleall Jal deidivall 43 L)
YV (26) Sty alls m il Al 53130 ol ) g o) A0 ) Fpusd AN 3 g Bawt A1l a5 i 13)
aAlalaadl s Ja 8 A il allal) oda (i ey geaanall yue Cl Jigall (e 200 (5 gind i) Jai K g gl (pudy g
L y (20) 5 Walagl (See Sl igalls ansilaiall aghaal) alalil)
Standard trial functions are as follows: 40Ul o 4 yaill 4pnlall J)sal)
i If f(x) = ce®™ thentry
yp(x) = AeP*
ii. If f(x) = cysinbx + c,cosbx (c; or ¢, may be zero) then try
yp(x) = A;sinbx + Aycosbx
iii. Iff(x)=c,+cx+c, x% +-+c, x™ (some 4,, may be zero)then try
Vp(X) = Ap + Ajx + Ay x* + -+ Ay xV
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iv. If f(x) is the sum or the product of any of the above, then try yp(x) as the sum or
product of the corresponding individual trial functions.

Jsall o o) g saaaS yp(X) Jslad 1) oe) SV (e (5 a5l g same 2 o le (& fi(x) W

ALl 4liioal) 4 yal)

If f(x) Use yp(X)
(o + C1x + €y X% + -+ ¢y x™)eP* (Ap + Ax + Ay x? + -+ Ay xN)eb*
(a polynomial times an exponential function) (another polynomial times an exponential function)
csin(bx)e® or ccos(bx)e®* (Aysinbx + A,cosbx)e®
(sines or cosines times exponential functions) (a product of an exponential function times a linear
combination of sine and cosine)
(co + c1x + o x* + -+ ¢y 2™ )sin(bx) (Ag + Ajx + Ay x? + -+ Ay x"V) cos(bx)
Or (co + c1x + €3 X% + -+ + ¢, x™)cos(bx) +(A, + Ajx + Ay, x? + -+ Ay xN) sin(bx)
(a polynomial times sine or cosine) (a polynomial times sine and another times cosine)

(co + C1x + c3 x% + -+ ¢, x™ e sin(bx) (Ap + A1x + Ay x? + -+ Ay xV)e™ cos(bx)
Or (Cp 4 €1 4 €3 X% + -4 ¢, x™)e¥cos(bx) +(Ap + A1x + Ay x* + -+ Ay xN )esin(bx)
(All three together—whoopee!) (what you would expect)

It should be noted that this method fails if any term in the assumed trial function is also
contained within the complementary function yc(x). In such a case the trial function should
be multiplied by the smallest integer power of x such that it will then contain no term that
already appears in the complementary function. The undetermined coefficients in the trial
function can now be found by substitution into nonhomogeneous linear ODE.
Ay (8 25 50 Lyl 58 L jitall dgy pail) allall b o (g1 S 130 aaaiudl) Jid 45 Hhall o3 o Adaadle cany
o) Jalaa yraal elliad ) x adlall ddassd gy (o paai () g 4gm pail) adlall allall o3a 8 yp(X)ALeSal) 4dlal
Ayl AN sadaall e ol sall ALK ) daiall allall b Jaal jalds as (g1 (5 st () Cogas 1388 5 minaaa
Avdlaiall pe agladl) alalédl) Alibaally (g 23l A e laalag) (V) audaiud

Examplel: y"' —2y" =3y =e*
Sol. The complementary solution is
Yo = cie™* + c,e3¥
Which was found by using the method for homogeneous linear ODE.
Let yp = Ae**
Then ¥, =24e** & y,'" =4Ae**
Substitute it’s in ODE above

4Ae%* — 4Ae?* — 3Ae%* = e?*
—34e%* = %X



The general solution for the equationis y = y. +y,
1

y =ce™™ + ce3¥ —§e2x

Example2: y" =2y —3y=3x>+4x—-5
Sol.
The complementary solution is Yo = c1e”% + ce3*
Which was found by using the method for homogeneous linear ODE.
Let yp = A1x* 4+ Ayx + Az
Then Y =2Ax+4, & y,'" =24
Substitute it’s in ODE above
24, —2(2QA;1x + Ay) — 3(A;x? + Ayx + A3) = 3x? +4x — 5
—3A;x% + (=44, + 34,)x + (24, — 24, —343) =3x2 +4x -5
The corresponding terms on both sides should have the same coefficients, therefore,
equating the coefficients of like terms.

x?: 3 =-34, — A4, =-1

X: 4 =—4A, + 34, — A, =0

1: —5=24,—24,— 34, — A =1
Sy =—x 41

The general solution for the equationis y = y. + y,
y=ce 4+ e’ —x2+1

Example3: y" —2y" —3y = 5cos2x
Sol. The complementary solutionis  y, = c;e™ + c,e3*
Which was found by using the method for homogeneous linear ODE.
Let Yp = Aic0s2x + Ajcos2x
Then Yp' = —2A;sin2x + 2A,c052x & y," = —4A cos2x — 4A,sin2x
Substitute it’s in ODE above
—4A,c052x — 4A,sin2x — 2(—2A,sin2x + 2A,cos2x) — 3(A,cos2x + A,cos2x) = 5cos2x
(—4A, —4A, —3A;)cos2x + (—4A,+4A; — 34,)sin2x = 5cos2x
(—=7A; —4A;)cos2x + (4A; — 7A,)sin2x = 5cos2x
Compare the coefficients:

cos2x: 5=—74; — 44, — A =— 7/13
sin2x: 0= 44, — 74, — A, ==%/3
7
= —— 2x ——sin2
yp 13COS X 135m X
The general solution for the equationis y = y. + v,
7
y =ce™* + ce3* — Ecost — Esian
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Note: The method of undetermined coefficients will fail to give us a solution if our
proposed particular solution contains elements of the complementary solution.

Joal puaic (555, J g sall Jall S 131 Ja JaeY Qi G gus snaanall e Jal sal) &yl sadaadha

Yo JaSall dall (B 35a 5a
Example: y" +3y’ +2y=5e"%*
Sol.
Ve = 1% + e
Since Ae~2* is one of the homogeneous solutions, we adjust our guess for the specific
solution to
yp(x) = Axe
Then we have
yp = Ae™* —2Axe™* = Ae”**(1 — 2x)
yy = —4Ae™?* + 4Axe™** = 44e " (x — 1)
Plugging these in to the differential equation yields
y'+3y +2y =44e *(x —1) + 34e (1 — 2x) + 2 Axe™**
=Ae ?*(4x — 4 + 3 — 6x + 2x)
— _Ae—Zx
Setting this equal to Se—2t, we finally get A =—5, and we have the specific solution
yp(t) = —5Ste—2t
which gives us the general solution

y(t) = yc(t) + yp(t) = cle—t + c2e—2t — Ste—2t.

Examples for f(x) is a sum of several terms
When f(x) is a sum of several functions: f(x) = f;(x) + f,(x) + -+ + f,,(x), we can break
the equation into n parts and solve them separately. Given
Lates Hparledagn ol @Vl o Al adabaall 2525 Sy J) g0 82a] £ gaaall (e 3 e 4 allall il )
' +p)y +q@)y =)+ f2(0) + -+ fu(x)
we change it into
y'+p()y" + 9y = fi(x)
'+ )y +q@)y = fo(x)

y' +p@)y +q@)y = fu(x)
Solve them individually to find respective particular solutions, y,1, ¥pz,... , ¥pn. Then

add up themto get ¥, = yp1 + Yp2 + -+ + yon.
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Example: y" =2y —3y =e?* +3x%+4x — 5 + 5c0s2x
Sol:
Solve each of the sub-parts

y" —2y' —3y=¢e** _>yp1:‘?1€2x
y" =2y —3y=3x*+4x—-5 — Ypy = —x*+1
y'""—2y" — 3y = 5cos2x — Yp2 = —%cost - %sian
Yo = Yp1 T Yp2 + Yp3.
Yy = e —x2 41— lcost — —sin2x
P 3 13 13
The general solution for the equationis y = y. + y,
y=ce *+c 3 2% _x2 41 —lCOSZx — —sin2x
! 273 13 13

Examples for f(x) is a product of several functions

If f(x) is a product of two or more simple functions, e.g. f(x) = x%e>*cos(3x), then our

basic choice (before multiplying by x, if necessary) should be a product consist of the

corresponding choices of the individual components of f(x). One thing to keep in mind:

that there should be only as many undetermined coefficients in y,, as there are distinct terms

(after expanding the expression and simplifying algebraically).

) LAl 131 JEal &S adasadl J)sall e SES) ) cpuiilly G jeia Juals (e 0 ke o allall cailS 1)

DA el f () Adlall oa yiiall DS jall aAlial) il jlall s Ly i anid (s B x4y i )

& 58 323 ) 0 hran Ja g i ellia o) LS Vp Jedanall pe Jal gall (e maal) Jadd as gy Camy 4l Ui YU o34 Cany
(ol apill 5 i)

Examplel: y" —2y' —3y = x3e>*cos3x

Sol:

We have f(x) = x2e>*cos3x. It is a product of a degree 3 polynomialf, an exponential

function, and a cosine. Out choice of the form of y,, therefore must be a product of their

corresponding choices: a generic degree 3 polynomial, an exponential function, and both

cosine and sine. Try

J daS L)L alad s A1y g dgl) ally ae A81EN 4 )l (e 3 gas Badaa @ e Jaals (e 0 e o4 alla Ll
Al e IS e agul A1y ae AN A Hall (e ddle 3 gaa Badata abiliall Gl LA G jaia Jialas 4 ¢Sy el Vp

RUITEN | PINDNRUTEN |

Correct form

Vp = (A1x3 + Ayx? + Azx + Ay)e>*cos3x + (Byx® + Box? 4 Byx + By)e>*sin3x

Wrong form

Vp = (A1x3 4+ Ayx® 4+ Azx + A,) Be>*(Ccos3x + Dsin3x)

Another way (longer, but less prone to mistakes) to come up with the correct form is to

do the following.
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ok Lo i o a pmaal) IS ) Jea il i (e (sUad S Ay i (S05 ¢ sha) (5T 48yl llia
with the basic forms of the corresponding functions that are to appear in the product,
without assigning any coefficient. In the above example, they are
(x3 +x% +x + 1), e and cos3x + sin3x
(sed eodled QU 3 Jalra (gl aaad ) sy e puall 8 pedas ) AL Cailda 5 (pe Al JISEY) 0
Multiply them together to get all the distinct terms in the product:
a_u..al\gﬁ o jaall 2 gaall S e Jpanlllas ol
(x® +x% + x + 1)e>*(cos3x + sin3x)
= x3e>*cos3x + x?e>*cos3x + xe>*cos3x + e>*cos3x + x3e>*sin3x
+ x2e5*sin3x + xe>*sin3x + e>*sin3x
Once we have expanded the product and identified the distinct terms in the product (8, in
this example), then we insert the undetermined coefficients into the expression, one for
each term: ‘
S ) oah i o(JEd) e 4 «8) o juall dlaal dsial g 3 g0n ity o puall o Saall Al Liad 5l 2
s JS0 s g cadalaall JdBaasa e G3llae JAa
cos3x + A,x%e5cos3x + Azxe>*cos3x + A,e>*cos3x
+ Byx3e>*sin3x + B,x%e>*sin3x + Byxe®*sin3x + B,e>*sin3x
Which is the correct form of y,, seen previously. Wl s s LS Jdnnia diaa (2 Sl

yp — A1x365x

Examplel: y'" + 25y = 4x3sin5x — 2e3*cos5x

Sol.

The complementary solution is y, = ¢; cos5x + ¢, sin5x. Let’s break up f(x) into 2
parts and work on them individually.

Alfie 3 ) geas o) IS Janis i a ) (X) iy, = ¢ cOS5X + ¢ SIn5x s aciall ol
fi(x) = 4x3sin5x is a product of a degree 3 polynomial and a sine function. Therefore,
Yp1 should be a product of a generic degree 3 polynomial and both cosine and sine.

G dhala 08 Gl I cuad Alla 34BN A )l (e 3 538 Badeie o e dualas (2 S 50T A
Al cuadl g cuadl Aly e SIS 8 AN as jall (e ddle 350 23204
Vp1 = (A1x® + Ax® + Asx + Ag)cos5x + (Byx® + B,x* + Bsx + B,)sin5x
The validity of the above choice of form can be verified by our second (longer) method.
Note that the product of a degree 3 polynomial and both cosine and sine:
(x3 + x? + x + 1)x(cos5x + sin5x) contains 8 distinct terms listed below.
gl dania U Al Lal (U shal) 4nl 45, jlallidan) 5 4ie Gaail) Sy S8 dum (e odlefHLEAY) daa
el ol 5l e IS 53 4a 0
An )l aliadic gaa Al e sgiad Ally (x3 + x2 + x + 1)X(cos5x + sin5x)
x3cos5x  x?cos5x  xcos5x  cos5x
x3sin5x  x?sin5x xsin5x Sin5x
Now insert 8 independent undetermined coefficients, one for each:
al s JS0 aal ) aliiig codas e Jalse 8 Jaai (V)
Yp1 = A1x3cos5x + A,x?cos5x + Azx cos5x + Aycos5x +
B,x3 sin5x + Byx?sin5x + B3x sin5x + B,sin5x
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However, there is still one important detail to check before we could put the above
expression down for y,;. Is there anything in the expression that is shared with
Y. = €1 cos5x + ¢; sin5x? As we can see, there are — both the fourth and the eighth
terms. Therefore, we need to multiply everything in this entire expression by x. Hence,
s a1y Jdind N odel junil) aa s (e oS ) J 4 338 age 2a) 5 Jaadi Slia 13 Y i3 pa
e —dla o) s ol WSy WS |y, = ) coS5x + ¢q Sin5x ae WS i oy G el 8o 8
Sl o el g0 JalSI el 138 e 5 S Com ) Al Ll (A il a5l aad) ) g 2
Vp1 = x(A1x> + A;x* + Azx 4+ Ay)cos5x + x(Byx® + Byx? + Bsx + B,)sinbx
Vp1 = (A1x* + Ayx® + Azx® + Ayx)cos5x + (Byx* 4 Byx® + Bsx? + Byx)sin5x
The second half of f(x)is f;(x) = —2e3*cos5x. It is a product of an exponential
function and cosine. So our choice of form for y,,, should be a product of an exponential
function with both cosine and sine .
Sl PAPJURTEN adla & Al Al @pa Juals i) | fl(x) = —2e3*cos5x s f(x) adlall ‘;71.\3\ aall
el G g cua A3 (e S me ) Ay @ pin Jialas (e 0 ke 0S5 ) ey, Asal U jLial
Yp2 = D1e3*cos5x + D,e3*sin5x
There is no conflict with the complementary solution — even though both cos5x and sin5x
are present within both y, and y,,, they appear alone in y,, but in products with e3* in y,),,
making them parts of completely different functions. Hence this is the correct choice
YVp2 3 Ve 00 S B se sinbx 5 cos5x 0 JS e e N Slo Fn L dall s G et ) a5
e il e diliie at Wl el al deaylas ) 8 €3 @ ol (Sl (B el
gesall LAl
Finally, the complete choice of y, is the sum of y,,; and y,, .
-Yp2 3Yp1 &= dala Yo d?m\ BESREBTN
Yp = Yp1 + Vp2
Vp = (Agx* 4+ Apx® + Azx® + Ayx)cos5x + (Byx* + Byx® + Byx? + Byx)sin5x
+ D,e3*cos5x + Dye3*sin5x

Example2: y" — 8y’ + 12y = x%e% — 7xsin2x + 4
Sol.
Complementary solution:  y,. = ¢; e** + c,e®*
The form of particular solution is
Vp = (A1%3 4+ Ayx?® + A3x)e® + (Byx + By)cos2x + (Dyx + Dy)sin2x + E

Example3: y" + 10y’ + 25y = xe™>* — 7x%e?*cos4x + 3x? — 2
Sol.

Complementary solution:  y, = ¢; e™>* + c,xe™>*

The form of particular solution is
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y, = (A1x3 + A,x%)e™>* + (B1x% + Byx + B,)e**cos4x
P
+ (D1x% + D,x + D3)e®*sin2x + E;x? + E, + E;

H.W.
A. Solve the differential equation or initial-value problem using the method of
undetermined coefficients.

Q1 y"'+9y =¥

Q.2 y'—4y'+5y=e7*

Q.3 y" +3y' + 2y = sindx

Q4 y" 4+ y =cosx

Q5 y" + 3y’ + 2y = x?

Q.6 y'+y=x3

Q.7 y'+y=e*+x3 y(0) =2, y'(0)=0
Q.8 y'" — 4y = e*cosx y(0) =1, y'(0)=2
Q.9 y"' +y' —2y =x+sin2x y(0) =0, y'(0)=1

B. Write a trial solution for the method of undetermined coefficients. Do not
determine the coefficients.

Q1 y" + 9y = e?* + x%sinx
Q.2 y" +9y = xe ¥cosnx
Q.3 y'+9y =1+ xe*

Q4 y" + 3y —4y = (x3 + x)e*
Q5 y" + 4 = e3* + xsin2x
Q.6 y" +2y" + 10y = x2e *cos3x
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linear differential equations with variable coefficients.
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Examplel: Find the general solution for ODE
(x2D? — 2xD + 2)y = 4x3
Sol.
Letx =e® and 6 =i,
dt
so that
xD =60
x’D?*=6(0-1)
Substitute in the ODE, we get
(0(8 —1) — 20 +2)y = 4e3t
(6% — 30 +2)y = 4e3t
This is nonhomogeneous ODE of 2" order with constant variables.
The complementary solution y, for equation above is
(62-30+2)y=0
Let y = e, we get the auxiliary equation
A2—=31+2=0
The roots of this equation are
M=1 , A, =2
Yo = et + c,e?t  where ¢4, ¢, are arbitrary constants.
The particular solution y,, for equation above is
yp, = Ae’t
9A4e3t — 94 + 24e3t = 43t
nA=2
yp = 2e3t

The general solution is
Yy =Y +yp = cret + ce?t + 2e¥
Since x = et, so that
Y =Y+ Yy = c1x + cx% + 2x3

Example2: Find the general solution for ODE
(x3D3+2xD—-2)y=0
Sol.
Letx =et and 6 =i,
dt
so that
xD =6
x2D2 =6(0 — 1)
x3D3 =600 —-1)(6 —2)
Substitute in the ODE, we get
BO—-1)O—-2)+20+2)y=0
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(03 —362+40+2)y=0
This is homogeneous ODE of 3™ order with constant variables.
The complementary solution y, for equation above is

(03 —-360%2+40+2)y=0
Let y = e*t, we get the auxiliary equation

AB—=312441+2=0

A-1)A*=21+2)=0

The roots of this equation are

Al = 1 y /12’3 = _2124_8 = _1 $l

Yo = et + e t(cycost + cysint)  where ¢y, ¢y, c3 are arbitrary constants,
The general solution is
Yy =Y.+ ¥, =cet +ce?* wherey, =0
Since x = et and t = Inx so that

1
Y=YtV =Yc=C1x+ o (czcos(lnx) + c3sin(lnx))

Example3: Find the general solution for ODE
x%y" — 6y = x* +l
x2
Sol.
Letx =ef and 6 =i,
dt
so that
xD =0
x*D?=6(6-1)
Substitute in the ODE, we get
B0 —1)—6)y=e?t +e72t
(02 -6 —-6)y =e? +e72
This is nonhomogeneous ODE of 2" order with constant variables.
The complementary solution y, for equation above is
0?—-06-6)y=0
Let y = e?t, we get the auxiliary equation
A2—1-6=0
he roots of this equation are
M=-2 , A, =3
Y. = cie 2t + c,e3t  where ¢y, ¢, are arbitrary constants.
The particular solution y,, for equation above solve each of the sub-parts:
1. (62-606—-6)y=e?
Yp1 =Ae? =  4Ae —24e* —6Ae = e = A=""
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Yp1 = e

2.(62—-06—-6)y=e"2

yp2 =Bte™?' since e~2 is already found in complementary solution.

Yp2' = —2Bte™?' + Be™*
Vp2'' = 4Bte™?' — 2Be~%' — 2Be™%t = 4Bte ™' — 4Be~?!
4Bte™?' — 4Be~?t + 2Bte %' — Be %t — 6Bte %t = 72
—5Be 2%t = 72t

. B J— _1
~B=—
-1
-1 1
Yo = Yp1 +yp2 = 4 et ——te %

The general solution is

y=yc+yp =cre 2t + et — %e” - %te‘”
Since x = et and t = Inx so that
1 1
Yy=Ye+Vp =Y =c1x7% 4 %3 —sz —glnx-x‘2
H.W.
Find the general solution of linear ODE.
Q.1 (x3D3 + 2xD — 2)y = x*logx + x
Q.2 x3y"" — 4x%y" + 8xy' — 8y = 4lnx
Q.3 x%y" —xy' —3y =x5
Q4 x%y" + 2xy' — 6y = 5x%+6
Q5 x%y" + 6xy’ + 6y = Inx
Lagrangels differential equation -Aabalidl) ) S Adslaa 2

sl 3305 ) A il 4 )y aglall

il )SY Alalas

an(ax + b)"y™ + ay_;(ax + D)ty 4+t as(ax + b) y' + apy = f(x)

Where a, b, a,, a4,..., a, are constants, and a, # 0

apbaliil) gl Allae () (o) Agboalil) 5l o) Asbaa ) Jsai el SY alibaa (6 g=1, h=0 331 Loxie 4il el 5
7= ax + b sarsill aaiiv Lild agloalidl il SY alibeae Jaly | aslalill il SY alabea (e daali o gua

Udladd 4eaiisall L hall Guity Jad 408 C0llae ) Llalds Aobee ) Alsladll Jpaiid 7 = of

Example 1: Find the general solution of linear ODE
4
(Bx+2)%y" +2(Bx+2)y —4y =3x% +4x + 3
Sol.
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d 1d d? 1d?
Let z=3x+2, and X =22 ZX__22%
dx 3dz dx? 3dz?

Substitute in ODE, we get
1 _d%y 2 dy z—2\* z—2\ 4
2T 4, — —
32 a2 t3l Y ( 3 ) +4( 3 >+3
1 1
=—(Z2—4Z+4+4Z—8+3)=§ZZ

3

1 .d*’y 2 dy 1

§Z2ﬁ+§ZE—4y=§Z2 X 3
d? d
sz—Z)ZI+ZZd—)Z}—12y=z2

By using the substitution z = e and 8 = %
(0(6—1)+20—-12)y = e?
(0240 —12)y = e?
This is linear ODE of 2" order with constant coefficients.
The complementary solution y,. for equation above is
(62+6—-12)y=0
Let y = e?*, we get the auxiliary equation
A+1-12=0
he roots of this equation are
M=-3 , 1, =4
Y. = cie 3t + c,e*t  where ¢y, ¢, are arbitrary constants.
The particular solution y,, for equation is:

y, = Ae*
-1
Y, = 7621?

The general solution is

1
y=yc+yp, =cre 3 + et — ;eZt

Sincez=¢e!, andz=3x+2

1
Y=Y +yp =123 + 2" —;zz

1
y=ye+yp =c1(3x+2)7% +c,(3x + 2)* —;(Sx + 2)?

Example 2: Find the general solution of linear ODE
(x+2)2%y"+(x+2)y —y=x+2
Sol.

d d d? d?
let z=x+2, and 2 =% Y -2

dx  dz' dx?2 dz?
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Substitute in ODE, we get

d’y  dy
2_ 7 _— =
VA de + z dZ VA

By using the substitution z = et and 6 = %

OO —-1)+0—-1)y=e?
(0% -1y =e*
This is linear ODE of 2" order with constant coefficients.
The complementary solution y, for equation above is

(0> -1y =0
Let y = e?*, we get the auxiliary equation
2-1=0

he roots of this equation are
21 = _1 , AZ = 1
Yo = cie”t + c,et  where ¢4, ¢, are arbitrary constants.

The particular solution y,, for equation is:

y, = Ae?t

1
—— 2t __ 1
yp =5 (e )
The general solution is
1
Y=Y+ =cre t+cet + Z(eZt -1

Sincez=et, andz =x + 2

1
y=yc+yp =ci(x+2)"" +c,(3x +2) +Z((x+2)2—1)

Example 3: Find the general solution of linear ODE
(1+2x)%y" —6(1+2x)y" + 16y = 8(1 + 2x)3

Sol.
2 2
let z=1+2x, and L =2% L2 _ 427
dx dz dx? dz?
Substitute in ODE, we get
d’y dy
2 _ -z — 3
4z 172 12z dz + 16y = 8z

By using the substitution z = e and § = %

(0(6 —1) — 360 +4)y = 23t
(6% — 40 + 4)y = 23t
This is linear ODE of 2" order with constant coefficients.
The complementary solution y, for equation above is
(6% —46 +4)y =0
Let y = e?*, we get the auxiliary equation
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A2—424+4=0
he roots of this equation are
Al =2 B /12 =2
¥e = (c; + cyt)e?t  where ¢4, ¢, are arbitrary constants.
The particular solution y,, for equation is:
y, = Ae3t
-1

Vp = ?(2€3t —4)

The general solution is
1
Y =Yetyp = (et cat)e — 2 (2e% —4)

Sincez=-¢et, andz=1+ 2x

1
Y=Yty = (cl + cyIn(1 + Zx))(l + 2x)? — §(2(1 +2x)3—4)

H.W.

Find the general solution of linear ODE

Q.1 (Bx+2)?y" +3(Bx+2)y' —36y =9

Q.2 x+1D%y"—(x+1)y —-3y=x

Q.3 QCx+1)2%y" +2Q2x+ 1)y —12y = 6x

Q4 (Bx+2)%y" +3Bx+2)y =36y =3x2+4x+1

63



