Chapter Three

Energy Balance and Temperature

The Fate of Solar Radiation

- We owe it all to the sun...
- 3 things can happen to solar (and all) radiation:
 - 1) Absorption
 - 2) Scattering and Reflection
 - 3) Transmission

Absorption

- **Absorption** the full energy transfer from radiation to a substance
- Atmospheric absorption varies by substance:

UV – absorbed by O3 (stratosphere)

Visible – hardly absorbed (lucky for us)

Infrared – partially absorbed by water

vapor, CO2 (less cooling in high humidity..)

The Atmospheric Window

• The atmospheric window is a band (8-12 µm) of very little absorption

Earth's surface emission

- Liquid water (i.e. clouds), however, are good absorbers of all longwave radiation
- Are cloudy or clear nights warmer???

Scattering and Reflection

Scattering – the deflection of radiation by a substance **Diffuse scattering** – radiation deflected in many directions, becomes diffuse radiation

Reflection – a type of scattering, radiation is deflected back with equal intensity (mirror) **Albedo** – the fraction of light reflected (earth's albedo is ~0.3)

- Scattering affects many things:
 - ➤ Shaded areas still receive solar radiation (better buy more sunscreen!)
 - The sky is blue and sunsets are red (**Rayleigh scattering**)
 - ➤ Hazy or polluted days make the sky white or gray (**Mie scattering**)
 - > Clouds are white (**nonselective scattering**)

Rayleigh Scattering

- Occurs when substance is small compared to wavelength of radiation (such as atmospheric gases)
- Scatters smaller wavelengths (blue) more than longer wavelengths (red)
- Makes the sky appear blue, sunsets red

Mie Scattering

- Occurs when substance is of comparable size to wavelength of radiation (such as aerosols)
- Unlike Rayleigh scattering, scatters all wavelengths more efficiently
- Makes hazy and polluted skies look white or gray, enhances sunsets

© 2010 Pearson Education, Inc

Nonselective Scattering

- Scattering by relatively large particles such as cloud droplets
- Scatters all wavelengths comparably
- Makes clouds white or gray

Transmission

• **Transmission** – radiation passes through a substance without being absorbed or scattered

The Energy Balance of Earth

- Earth is generally neither warming or cooling (global climate change aside) it is in steady-state, or equilibrium (just like a skydiver at terminal velocity...)
- This means the gain from solar radiation must be balanced by the loss from terrestrial radiation

The story begins with a net gain of solar radiation

© 2010 Pearson Education, Inc.

The story ends with a loss of longwave radiation from earth and the atmosphere

© 2010 Pearson Education, Inc.

But the story isn't really over....

- Why don't they?

- Conduction and convection!!!
- 1) Conduction causes heat transfer to air in contact with ground
- 2) Convection causes this air near the surface to rise like a helium balloon, mixing heat throughout the atmosphere

Sensible heat flux

• Conduction and convection!!!

26

- Let's get specific latitudinal variations also exist in the radiation budget
- But these are opposed by advection of heat through wind and ocean currents

The Greenhouse Effect

- The atmosphere is kind of like a greenhouse, and kind of not
- Earth stays warm by atmospheric absorption/re-emission
- Without greenhouse gases, earth's equilibrium temperature would be much cooler (-17° C instead of 15° C

© 2010 Pearson Education, Inc.

• Altering greenhouse gas (i.e. CO2) concentrations in the atmosphere will alter earth's equilibrium temperature

Global Climate Change

The Intergovernmental Panel on Climate Change (IPCC) stated in 2007 that:

- 1) Average global temperature is increasing (1.33oF in the last 100 years)
- 2) Temperatures are increasing faster now than they did earlier last century
- 3) Extreme warm events are increasing, extreme cold events are decreasing
- 4) Global snow cover is decreasing
- 5) All of the above is very likely due to anthropogenic greenhouse gas emissions

Predicted Global Temperature 2000-2100

Greenhouse gas emissions

- Uncertainties still exist for global warming predictions (effect of aerosols, cloud cover, greenhouse gas emission)
- Local climate change is a very important aspect of current research

Temperature

• Temperature is a measure of the average kinetic energy of a substance

Measuring Temperature

- Mercury (or other fluid) thermometer – measures temperature by fluid expansion/contraction
- Bimetallic strip –
 measures
 temperature by
 different
 contraction/expansion
 of metal strips
- Thermistor measure temperature based on resistance to electrical current (fast response)

Instrument shelters used for surface observations

© 2010 Pearson Education, Inc.

More Tidbits on Temperature...

Diurnal range – the range of temperatures over the night/day cycle at a given location

Highest temperature ever recorded on earth:

58°C in Libya

Lowest temperature ever recorded on earth:

-90°C in Antarctica

• Wind chill index – provides an estimate of the perceived temperature based on actual temperature and wind

Temperature (°F)																		
Calm	40	35	30	25	20	15	10	5	0	– 5	-10	-15	-20	-25	-30	-35	-40	-45
5	36	31	25	19	13	7	1	-5	-11	-16	-22	-28	-34	-40	-46	-52	- 57	-63
10	34	27	21	15	9	3	-4	-10	-16	-22	-28	-35	-41	-47	-53	-59	-66	-72
15	32	25	19	13	6	0	-7	-13	-19	-26	-32	-39	-45	-51	-58	-64	-71	-77
20	30	24	17	11	4	-2	-9	-15	-22	-29	-35	-42	-48	-55	-61	-68	-74	-81
<u>£</u> 25	29	23	16	9	3	-4	-11	-17	-24	-31	-37	-44	-51	-58	-64	-71	-78	-84
(ydu) 30	28	22	15	8	1	-2	-12	-19	-26	-33	-39	-46	-53	-60	-67	-73	-80	-87
pui _N 35	28	21	14	7	0	-7	-14	-21	-27	-34	-41	-48	-55	-62	-69	-76	-82	-89
₹ 40	27	20	13	6	-1	-8	-15	-22	-29	-36	-43	-50	-57	-64	-71	-78	-84	-91
45	26	19	12	5	-2	-9	-16	-23	-30	-37	-44	-51	-58	-65	-72	-79	-86	-93
50	26	19	12	4	-3	-10	-17	-24	-31	-38	-45	-52	-60	-67	-74	-81	-88	-95
55	25	18	11	4	-3	-11	-18	-25	-32	-39	-46	-54	-61	-68	-75	-82	-89	-97
60	25	17	10	3	-4	-11	-19	-26	-33	-40	-48	-55	-62	-69	-76	-84	-91	-98
Frostbite Times 30 minutes 10 minutes 5 minutes																		

How Meteorologists Analyze Temperature

• In the horizontal...

• In the vertical...

