Chapter 6

Cloud Development and Forms

Cloud Formation

- Condensation (i.e. clouds,fog) results from:
 - Diabatic cooling (important for fog)
 - Adiabatic cooling (important for clouds)
- Clouds form due to adiabatic cooling in rising air

 $\Gamma_{J} = 9.8^{\circ}\text{C/km}$ (unsaturated lapse rate)

 $\Gamma_m \sim 5^{\circ}\text{C/km}$ (saturated lapse rate)

How Does Air Rise?

4 mechanisms cause air to rise:

- 1) **Orographic lift** air that rises because it is going over a mountain
- 2) **Frontal lift** air that rises at a front
- 3) **Horizontal convergence** air that is forced to rise because it is converging
- 4) **Convection** air that rises because it is less dense that its surroundings

Orographic Lift

Air rises as it approaches a mountain peak

Rain Shadow

- A rain shadow is an area of less precipitation and clouds on the downwind side of a mountain (the anti-cloud!)
 - > Air descends downwind of a mountain peak
 - ➤ Air warms adiabatically due to compression
 - Precipitation and clouds evaporate to form rain shadow

Frontal Lifting

Front – a zone of rapidly changing temperature (strong temperature gradient)

Types of Fronts

- 1) Cold Front cold air is advancing
- 2) Warm Front warm air is advancing
- 3) Stationary Front front isn't moving
- 4) Occluded Front you'll find out later

Cold Front (cold air pushes warm air up)

Warm Front (Warm air overruns cold air)

Convergence

• Air must rise when it converges

- Air "bubbles" or "parcels" rise when they are warmed and become less dense than their surroundings (exactly the same way a helium balloon does)
- This is how thunderstorms form!

Atmospheric Stability

Atmospheric stability – a measure of the atmosphere's susceptibility to vertical motion Atmospheric stability depends on the **environmental lapse rate** (Γ_e)

Atmospheric stability comes in 3 flavors:

- 1) Absolutely stable
- 2) Absolutely unstable
- 3) Conditionally unstable

Absolutely Unstable Air

The slightest nudge sends the ball accelerating away...

Absolutely unstable: $\Gamma_{e} > \Gamma_{d}$ (unsaturated air)

$$\Gamma_{e} = 1.5^{\circ} \text{C}/100 \text{m}$$

$$\Gamma_d = 1.0^{\circ} \text{C}/100 \text{m}$$

Absolutely unstable: $\Gamma_e > \Gamma_m$ (saturated air)

Absolutely Stable Air

Any push and the ball will go back to the valley and come to rest again...

Conditionally Unstable Air

If the ball is pushed high enough, it will go over the hump and accelerate away... (otherwise it comes back to rest)

$$\Gamma_d = 1.0^{\circ}\text{C}/100\text{m}$$

$$\Gamma_e = 0.7^{\circ}\text{C}/100\text{m}$$

© 2010 Pearson Education, Inc.

Stability Summary

Absolutely unstable:

$$\Gamma_{\scriptscriptstyle e}$$
 > both $\Gamma_{\scriptscriptstyle d}$ and $\Gamma_{\scriptscriptstyle m}$

Absolutely stable:

$$\Gamma_{e} < \text{ both } \Gamma_{d} \text{ and } \Gamma_{m}$$

Conditionally unstable

$$\Gamma_{\scriptscriptstyle d} > \Gamma_{\scriptscriptstyle e} > \Gamma_{\scriptscriptstyle m}$$

Limitations on Convection

- What stops vertical motion?
 - The only "stopper" is if air becomes more dense (colder) than its surroundings!!
- This happens in 2 ways:
- 1) Stable air aloft
- 2) Entrainment intake of drier air from surroundings
- **Lifting condensation level (LCL)** The level at which a cloud forms (altitude of cloud base)
- Level of Free Convection (LFC) the level at which air becomes less dense (warmer) than its surroundings

Inversions – Extremely Stable Air

Inversion – when temperature increases with height

Types of Inversions

- 1) Radiation inversion caused by nighttime cooling of surface air
- 2) Frontal inversion occurs at fronts

3) Subsidence inversion – caused by sinking air above a static layer

Entrainment

- Mixing with surrounding drier, cooler air cools rising parcels through:
- 1) Mixing
- 2) Evaporation

Cloud Types

Old classification of clouds

- 1) Cirrus (high, thin, wispy)
- 2) Stratus (layered)
- 3) Cumulus (puffy, vertically-developed)
- 4) Nimbus (rain-producing)

New classification of clouds

- 1) High clouds (higher than 6 km)
- 2) Middle clouds (b/w 2 and 6 km)
- 3) Low clouds (below 2 km)
- 4) Clouds with vertical development

High Clouds (> 6 km)

- Composed of ice crystals
- Principal types:
 - 1) Cirrus
 - 2) Cirrostratus
 - 3) Cirrocumulus

Other High Clouds - Contrails

Middle Clouds (between 2 and 6 km)

- Composed mostly of supercooled water
- Principal types:
 - > Altostratus
 - > Altocumulus

Altostratus

© 2010 Pearson Education, Inc.

Altocumulus

© 2010 Pearson Education, Inc.

Low Clouds (< 2 km)

- Composed of liquid water
- Principal types:
 - 1) Stratus
 - 2) Nimbostratus
 - 3) Stratocumulus

Stratus

Nimbostratus

Stratocumulus

Cumulus Clouds

Cumulus clouds can extend the entire depth of the atmosphere

Principal types:

- 1) Cumulus
 - cumulus humilis (fair-weather cumulus)
 - cumulus congestus (fortress-like)
- 2) Cumulonimbus

Cumulus Humilis

Cumulus Congestus

Cumulonimbus

© 2010 Pearson Education, Inc.

Observing Clouds

• **Ceilometers** – automated instrument that measures the height of the cloud base, or ceiling, as well as coverage

Cloud Coverage

TABLE 6-3 Cloud Coverage	
Amount of Cloud Coverage	Condition
0	Clear
1/8 to 2/8	Few*
3/8 to 4/8	Scattered
5/8 to 7/8	Broken
8/8	Overcast
* Any cloud coverage at all up to 2/8 is classified as "few."	

© 2010 Pearson Education, Inc.

- Satellite imagery is also a primary tool for observing clouds and cloud motions
 - ➤ Visible satellite imagery
 - ➤ Infrared satellite imagery
 - ➤ Water vapor satellite imagery

Visible Satellite Imagery

Infrared Satellite Imagery

© 2010 Pearson Education, Inc.

Water Vapor Satellite Imagery

