
Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 1 ~

Assembly Level Machine Organization

Introduction

1945: John von Neumann – Wrote a report on the stored program

concept, known as the First Draft of a Report on EDVAC – also Alan

Turing… Konrad Zuse… Eckert & Mauchly systems.

The basic structure proposed in the draft became known as the “von

Neumann machine” (or model).

– a memory, containing instructions and data

– a processing unit, for performing arithmetic and logical operations

– a control unit, for interpreting instructions

Intel 8086

Evolutionary design

 – Backwards compatible up until 8086, introduced in 1978

 – Added more features as time goes on

Complex instruction set computer (CISC)

– Many different instructions with many different formats

But, only small subset encountered with Linux programs

 – Hard to match performance of Reduced Instruction Set Computers

(RISC) –

But, Intel has done just that. In terms of speed. Less so for low

power

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 2 ~

Programmer-Visible State

– PC: Program counter

 Address of next instruction

– Register file

Heavily used program data

– Condition codes

Store status information about most recent arithmetic operation

Used for conditional branching

– Memory

Byte addressable array

Code, user data, (some) OS data

Includes stack used to support procedures

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 3 ~

Assembly Language

Translating Languages

English: Display the sum of A times B plus C.

C++: cout << (A * B + C);

Assembly Language:

mov A, Imed1

mul B

add A, C

The Compilation System

1. Low-level language

 Each instruction performs a much lower-level task compared to a

high-level language instruction

 Most high-level language instructions need more than one

assembly instruction

2. One-to-one correspondence between assembly language and

machine language instructions

 For most assembly language instructions, there is a machine

language equivalent

3. Directly influenced by the instruction set and architecture of the

processor (CPU)

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 4 ~

Advantages of Assembly Languages

1. Space-efficiency (e.g. hand-held device software, etc)

2. Time-efficiency (e g Real (e.g. Real -time applications etc) time

applications, etc)

3. Accessibility to system hardware (e.g., Network interfaces, device

drivers, video games, etc)

Advantages of High-level Languages

1. Development

2. Maintenance (Readability)

3. Portability (compiler, virtual machine)

CPU:Bus Interface Unit and Execution Unit

 The internal function of 8086 processor are partitioned logically into

processing units ,Bus Interface Unit(BIU) and Execution Unit

(EU).general block diagram of 8086 processor is shown in figure (4).

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 5 ~

Bus Interface Unit(BIU) and Execution Unit (EU).

Execution Unit (EU) : Execution unit receives program instruction codes

and data from the BIU, executes them and stores The results in the

general registers. It can also store the data in a memory location or send

them to an I/O device by passing the data back to the BIU. This unit, EU,

has no connection with the system Buses. It receives and outputs all its

data through BIU.

Bus Interface Unit : As the EU has no connection with the system

Busses, this job is done by BIU. BIU and EU are connected with an

internal bus. BIU connects EU with the memory or I/O circuits. It is

responsible for transmitting data, addresses and control signal on the

busses.

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 6 ~

 EU is used mainly to execute instructions. It contains a circuit called the

arithmetic and logic unit (ALU). The data for operations are stored in

circuit called Registers. The EU has eight registers for storing data; their

names are AX, BX, CX, DX, SI, DI, BP, SP and FLAGS register. The

EU accepts instructions and data that have been fetched by the BIU and

then processes the information. Data processed by the EU can be

transmitted to the memory or peripheral devices through the BIU. EU has

no direct connection with the outside world and relies solely on the BIU

to feed it with instruction and data. It is here that instructions are

received, decoded, and executed from the instruction queue portion of

BIU. The instructions are taken from the top of the instruction queue on

the first-in, first-out, or FIFO, basis.

ALU (Arithmetic & Logic Unit) : This unit can perform various

arithmetic and logical operation, if required, based on the instruction to be

executed. It can perform arithmetical operations, such as add, subtract,

increment, decrement, convert byte/word and compare etc and logical

operations, such as AND, OR, exclusive OR, shift/rotate and test etc.

The internal processor bus is needed to transfer data between the various

registers and the ALU because the ALU in fact operates only on data in

the internal processor memory

Address registers may themselves be somewhat general purpose, or they

may be devoted to a particular addressing mode. Examples include;

Segment pointers, Index registers, Stack pointer

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 7 ~

 Index Registers

1. SP (Stack Pointer): This is stack pointer register pointing to

program stack. It is used in conjunction with SS for

accessing the stack segment.

2. BP (Base Pointer): This is base pointer register pointing to

data in stack segment. Unlike SP, we can use BP to access

data in the other segments.

3. SI (Source Index): This is source index register which is

used to point to memory locations in the data segment

addressed by DS. By incrementing the contents of SI one can

easily access consecutive memory locations.

4. DI (Destination Index): This is destination index register

performs the same function as SI. There is a class of

instructions called string operations.

 Segment Registers : BIU has 4 segment busses, CS, DS, SS, ES.

These all 4 segment registers holds the addresses of instructions

and data in memory. These values are used by the processor to

access memory locations. It also contains 1 pointer register IP. IP

contains the address of the next instruction to execute by the EU.

1- CS (Code Segment): The code segment register holds the base

location of all executable instructions (code) in a program.

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 8 ~

2- DS (Data Segment): the data segment register is the default

base location for variables. The CPU calculates their location using

the segment value in DS.

3- SS (Stack Segment): the stack segment register contain the base

location of the stack.

4- ES (Extra Segment): The extra segment register is an

additional base location for memory variables.

1) Input/output

 In computing, input/output or I/O, is the communication

between an information processing system (such as a computer) and the

outside world, possibly a human or another information processing

system. Inputs are the signals or data received by the system, and outputs

are the signals or data sent from it. The term can also be used as part of an

action; to "perform I/O" is to perform an input or output operation. I/O

devices are used by a person (or other system) to communicate with a

computer. For instance, a keyboard or a mouse may be an input device for

a computer, while monitors and printers are considered output devices for

a computer. Devices for communication between computers, such as

modems and network cards, typically serve for both input and output.

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Information_processing_system
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Output
http://en.wikipedia.org/wiki/I/O_scheduling
http://en.wikipedia.org/wiki/Computer_keyboard
http://en.wikipedia.org/wiki/Computer_mouse
http://en.wikipedia.org/wiki/Computer_monitor
http://en.wikipedia.org/wiki/Computer_printer
http://en.wikipedia.org/wiki/Modem
http://en.wikipedia.org/wiki/Network_card

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 9 ~

Figure(3): I/O units communication

Variables

Syntax for a variable declaration:

name DB value

name DW value

DB – stays for Define Byte.

DW – stays for Define Word.

name – can be any letter or digit combination, though it should start with

a letter. It’s possible to declare unnamed variables by not specifying the

name (this variable will have an address but no name).

value – can be any numeric value in any supported numbering system

(hexadecimal, binary, or decimal), or “?” symbol for variables that are

not initialized.

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 10 ~

EX: MOV AL, var1

 MOV BX, var2

 RET ; stop the program (end)

 Var1 DB 7

 Var2 DW 1234h

Interrupts

Interrupts can be seen as a number of functions. These functions

make the programming much easier, instead of writing a code to print a

character you can simply call the interrupt and it will do everything for

you. There are also interrupt functions that work with disk drive and other

hardware. We call such functions software interrupts. Interrupts are also

triggered by different hardware, these are called hardware interrupts.

Currently we are interested in software interrupts only.

To make a software interrupt there is an INT instruction, it has very

simple syntax:

INT value

Where value can be a number between 0 to 255 (or 0 to 0FFh), generally

we will use hexadecimal numbers.

Each interrupt may have sub-functions. To specify a sub-function AH

register should be set before calling interrupt.

Each interrupt may have up to 256 sub-functions (so we get 256 * 256 =

65536 functions). In general AH register is used, but sometimes other

registers maybe in use. Generally other registers are used to pass

parameters and data to sub-function.

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 11 ~

1. INT 10h

The following example uses INT 10h sub-function 0Eh to type a

"Hello!" message. This functions displays a character on the screen,

advancing the cursor and scrolling the screen as necessary.

ORG 100h

MOV AH, 0Eh

MOV AL, 'H' ; ASCII code: 72

INT 10h ; print it!

MOV AL, 'e' ; ASCII code: 101

INT 10h ; print it!

MOV AL, 'l' ; ASCII code: 108

INT 10h ; print it!

MOV AL, 'l' ; ASCII code: 108

INT 10h ; print it!

MOV AL, 'o' ; ASCII code: 111

INT 10h ; print it!

MOV AL, '!' ; ASCII code: 33

INT 10h ; print it!

RET ; returns to operating system.

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 12 ~

2. INT 21h

 INT 21h use many sub-functions such as:

 01h to read one value of character from keyboard

 02h to write one character on the screen.

Every sub-function value was include in AH register

EX1: INT 21h for 01h sub-function

MOV AH, 01

INT 21H

Ret

In this program, if we read a character key this character was display on

the screen, otherwise 0 value was display on screen (such as F1, F4, etc.)

EX2: INT 21h for 02h sub-function

 Input: load 02 into AH register

 Load ASCII code into DL register

Output: Copy ASCII code into AL register

MOV AH , 02H

MOV DL , „?‟

INT 21H

………………………………

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 13 ~

EX:

 MOV AH, 1 ; read a character

 INT 21H

 MOV BL, AL ; save input character into BL

 MOV AH, 2 ; carriage return

 MOV DL, 0DH

 INT 21H

 MOV DL, 0AH ; line feed

 INT 21H

 MOV AH, 2 ; display the character stored in BL

 MOV DL, BL

 INT 21H

 MOV AH, 4CH ; return control to DOS

 INT 21H

…………………………………..

EX:

MOV ah, 1h ; keyboard input subprogram

int 21h ; read character into al

MOV dl, al ; copy character to dl

MOV ah, 2h ; character output subprogram

int 21h ; display character in dl

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 14 ~

 Status and Control register:

1- IP (Instruction Pointer): The instruction pointer register

always contain the offset of the next instruction to be executed

within the current code segment. The instruction pointer and the

code segment register combine to form the complete address of

the next instruction.

2- The Flag Register: is a special register with individual bit

positions assigned to show the status of the CPU or the result

of arithmetic operations.

Flag Register Statues

Flag Register Statues

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 15 ~

There two basic types of flags: (control flags and status

flags)

1- Control Flags: individual bits can be set in the flag register by the

programmer to control the CPU operation , these are:

1. The Direction Flag (DF): affects block data transfer instructions,

such as MOVS, CMPS, SCAS. The flag values are 0 = up and 1 =

down.

2. The Interrupt flag (IF): dictates whether or not a system interrupt

can occur. Such as keyboard, disk drive, and the system clock

timer. A program will sometimes briefly disable the interrupt when

performing a critical operation that cannot be interrupted. The flag

values are 1 = enable, 0 = disable.

3. The Trap flag (TF): Determine whether or not the CPU is halted

after each instruction. When this is set, a debugging program can

let a programmer to enter single stepping (trace) through a program

one instruction at a time. The flag values are 1 = on, 0 = off. The

flag can be set by INT 3 instruction.

2- Status Flags: The status flags reflect the outcomes of arithmetic and

logical operations performed by the CPU, these are:

1. The Carry Flag (CF): is set when the result of an unsigned

arithmetic operation is too large to fit into the destination for

example, if the sum of 71 and 99 where stored in the 8-bit register

AL, the result cause the carry flag to be 1. The flag values = 1 =

carry, 0 = no carry.

2. The Overflow (OF): is set when the result of a signed arithmetic

operation is too wide (too many bits) to fit into destination. 1 =

overflow, 0 = no overflow.

Computer Architecture……..Second Year (Sem.2)………….Lecture(3)

 7201 - 6201 م. سندس العزاوي............... قسم / الحاسبات....... مدرس المادة :

~ 16 ~

3. Sign Flag (SF): is set when the result of an arithmetic of logical

operation generates a negative result, 1= negative, 0 = positive.

4. Zero Flag (ZF): is set when the result of an arithmetic of logical

operation generates a result of zero, the flag is used primarily by

jump or loop instructions to allow branching to a new location in a

program based on the comparison of two values. The flag value =

1 = zero, & 0 = not zero.

5. Auxiliary Flag: is set when an operation causes a carry from bit 3

to bit 4 (or borrow from bit 4 to bit 3) of an operand. The flag

value = 1 = carry, 0 = no carry.

6. Parity Flag: reflect the number of 1 bits in the result of an

operation. If there is an even number of bit, the parity is even. If

there is an odd number of bits, parity is odd. This flag is used by

the OS to verify memory integrity and by communication software

to verify the correct transmission of data.

……………………………………………….

H/W

Q: Write an 8086 assembly language program (with flag register status) to

1. Load (FC54H) into memory location started at [2001]

2. Copy the data from memory location [2002] into AH register.

3. Load (FFFFH) into BX register.

4. Replace the data between BX register and AX register.

5. Addition AX register data with memory location data at [2001] and [2002]

Store the result reduced from step 5, into memory location started at [BX].

 Q: Write an 8086 assembly language program (with flag register status) to :

 Load (50H) into memory location started at [3000].

 Load (F1H) into memory location started at [3001].

 Replace the data between memory location [3000] and AH register.

 Load (2000H) into BX register.

 Subtract BX register data from memory location data at [3000] and [3001]

 Store the result reduced from step 5, into AX register

