

77

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

10.1 Introduction to Arduino Microcontroller:

Arduino is an open-source electronics platform based on easy-to-use

hardware and software. Arduino boards are able to read inputs: light on a

sensor, a finger on a button, or a Twitter message, and turn it into an

output: activating a motor, turning on an LED, publishing something

online. You can tell your board what to do by sending a set of instructions

to the microcontroller on the board. To do so you use the Arduino

programming language (based on Wiring), and the Arduino Software

(IDE), based on Processing.

Arduino was born at the Ivrea Interaction Design Institute as an easy tool

for fast prototyping, aimed at students without a background in

electronics and programming. As soon as it reached a wider community,

the Arduino board started changing to adapt to new needs and challenges,

differentiating its offer from simple 8-bit boards to products for IoT

applications, wearable, 3D printing, and embedded environments.

10.2 The Importance of Arduino:

Arduino has been used in thousands of different projects and applications.

The Arduino software is easy-to-use for beginners, yet flexible enough

for advanced users. It runs on Mac, Windows, and Linux. Teachers and

students use it to build low-cost scientific instruments, to prove chemistry

and physics principles, or to get started with programming and robotics.

Designers and architects build interactive prototypes, musicians and

artists use it for installations and to experiment with new musical

instruments. Makers, of course, use it to build many of the projects

exhibited at the Maker Faire, for example. Arduino is a key tool to learn

new things. Anyone - children, hobbyists, artists, programmers - can start

tinkering just following the step-by-step instructions of a kit, or sharing

ideas online with other members of the Arduino community.

Arduino offers some advantage for teachers, students, and interested

amateurs over other systems:

• Inexpensive: Arduino boards are relatively inexpensive compared

to other microcontroller platforms.

• Cross-platform: The Arduino Software (IDE) runs on Windows,

Macintosh OSX, and Linux operating systems. Most

microcontroller systems are limited to Windows.

https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Reference/HomePage
https://www.arduino.cc/en/Reference/HomePage
http://wiring.org.co/
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://processing.org/

78

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

• Simple, clear programming environment: The Arduino Software

(IDE) is easy-to-use for beginners, yet flexible enough for advanced

users to take advantage of as well. For teachers, it's conveniently

based on the Processing programming environment, so students

learning to program in that environment will be familiar with how

the Arduino IDE works.

• Open source and extensible software: The Arduino software is

published as open-source tools, available for extension by

experienced programmers. The language can be expanded through

C++ libraries, and people wanting to understand the technical

details can make the leap from Arduino to the AVR C programming

language on which it's based. Similarly, you can add AVR-C code

directly into your Arduino programs if you want to.

• Open source and extensible hardware: The plans of the Arduino

boards are published under a Creative Commons license, so

experienced circuit designers can make their own version of the

module, extending it and improving it. Even relatively

inexperienced users can build the breadboard version of the

module in order to understand how it works and save money.

10.3 Types of Arduino Boards:

There are 20 different Arduino types, each offering unique features and

capabilities. From basic microcontrollers to more advanced modules, let’s

explore some of the popular types of Arduino boards.

1. Arduino Uno R3:

2. Arduino Nano

3. Arduino Micro

4. Arduino Leonardo

5. Arduino Micro

6. Arduino Mega2560 Rev3

7. Arduino Nano 33 BLE

8. Arduino Due

9. LilyPad Arduino Board

10. Arduino Bluetooth

https://www.arduino.cc/en/Main/Standalone
https://www.arduino.cc/en/Main/Standalone

79

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

10.4 The Features of Arduino Boards:

The following are some of the key features of Arduino boards.

• Microcontroller: It acts as Arduino’s “brain” by handling all

processing tasks and providing access to input/output pins (I/O).

• Power Supply Source: An external power source, such as a battery

or USB port is needed. Some models also offer alternative methods,

like solar panels or AC adapters that allow more flexibility when

powering up.

• Digital & Analog I/O Pins: General-purpose digital inputs and

outputs read signals from sensors or buttons while analogs enable

complex elements like distance sensors or motor controllers to

connect easily.

• USB Interface (e.g., FTDI): The serial communication protocol

used by most Arduinos is UART over a mini-USB port. It enables

connection with computers for simple data transfer tasks and

programming.

• Clock Speed & Memory Capacity: Higher clock speeds result in

faster performance while larger memory capacities enable more

complex projects. These are important considerations when

selecting an appropriate Arduino model.

The Arduino Uno R3 is a popular board among DIY electronics that

offers features, such as 14 digital input/output pins, 6 analog pins, and an

ICSP (In-Circuit Serial Programming) header.

• It runs on the ATmega328P 16MHz microchip providing up to 5V

voltage supply to attached components.

• While it uses a USB-B connector for the computer interface, this

doesn’t mean that projects requiring advanced skills cannot be built

with it.

• The key specs include 2kB SRAM memory capability, 32kB flash

storage space, and 1KB EEPROM chip along with UART, and I2C

SPI communication capabilities which can also be replaced in case

of any problem.

• It is a great choice for anyone wanting to get into DIY electronics

and programming. It can be used for projects both simple and

complex.

80

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

10.5 Program Structure:

The basic structure of the Arduino programming language is fairly simple and

runs in at least two parts. These two required parts, or functions, enclose blocks

of statements.

void setup()

{

 statements;

}

void loop()

{

 statements;

}

Where setup() is the preparation, loop() is the execution. Both functions are

required for the program to work. The setup function should follow the

declaration of any variables at the very beginning of the program. It is the first

function to run in the program, is run only once, and is used to set pinMode or

initialize serial communication. The loop function follows next and includes the

code to be executed continuously-reading inputs, triggering outputs, etc. This

function is the core of all Arduino programs and does the bulk of the work.

1. Setup():

The setup() function is called once when your program starts. Use it to initialize

pin modes, or begin serial. It must be included in a program even if there are no

statements to run.

void setup()

{

 pinMode(pin, OUTPUT); // sets the ‘pin’ as output

}

2. Loop():

After calling the setup() function, the loop() function does precisely what its

name suggests, and loops consecutively, allowing the program to change,

respond, and control the Arduino board.

void loop()

{

 digitalWrite(pin, HIGH); // turns ‘pin’ on

 delay(1000); // pause for one second (1000ms=1s)

 digitalWrite(pin, LOW); // turns ‘pin’ off

 delay(1000); // pause for one second

}

81

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

3. Curly Braces{}:

Curly braces (also referred to as just "braces" or "curly brackets") define the

beginning and end of function blocks and statement blocks such as the void

loop() function and the for and if statements.

type function()

{

 statements;

}

An opening curly brace { must always be followed by a closing curly brace}.

This is often referred to as the braces being balanced. Unbalanced braces can

often lead to cryptic, impenetrable compiler errors that can sometimes be hard

to track down in a large program. The Arduino environment includes a

convenient feature to check the balance of curly braces. Just select a brace, or

even click the insertion point immediately following a brace, and its logical

companion will be highlighted.

4. Semicolon;:

A semicolon must be used to end a statement and separate elements of the

program. A semicolon is also used to separate elements in a for loop.

int x=13; // declares variable ‘x’ as the integer 13

Note: Forgetting to end a line in a semicolon will result in a compiler error. The

error text may be obvious, and refer to a missing semicolon, or it may not. If an

impenetrable or seemingly illogical compiler error comes up, one of the first

things to check is a missing semicolon, near the line where the compiler

complained.

5. Block Comments /*…*/:

Block comments, or multi-line comments, are areas of text ignored by the

program and are used for large text descriptions of code or comments that help

others understand parts of the program. They begin with /* and end with */ and

can span multiple lines.

/* this is an enclosed block comment don’t forget

 the closing comment they have to be balanced!

*/

Because comments are ignored by the program and take no memory space they

should be used generously and can also be used to "comment out" blocks of

code for debugging purposes.

Note: While it is possible to enclose single line comments within a block

comment, enclosing a second block comment is not allowed.

82

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

6. Line Comments //:

Single line comments begin with II and end with the next line of code. Like

block comments, they are ignored by the program and take no memory space.

// this is a single line comment

Single line comments are often used after a valid statement to provide more

information about what the statement accomplishes or to provide a future

reminder.

7. pinMode(pin, mode):

Used in void setup () to configure a specified pin to behave either as an INPUT

or an OUTPUT

pinMode(pin, OUTPUT); // sets 'pin' to output

Arduino digital pins default to inputs, so they don't need to be explicitly

declared as inputs with pinMode(). Pins configured as INPUT are said to be in

a high impedance state.

There are also convenient 20KΩ pullup resistors built into the Atmega chip that

can be accessed from software. These built-in pull up resistors are accessed in

the following manner:

pinMode(pin, INPUT); // set 'pin' to input

digitalWrite(pin, HIGH); // turn on pullup resistors

Pull up resistors would normally be used for connecting inputs like switches.

Notice in the above example it does not convert pin to an output, it is merely a

method for activating the internal pull-ups.

Pins configured as OUTPUT are said to be in a low-impedance state and can

provide 40mA (milliamps) of current to other devices/circuits. This is enough

current to brightly light up an LED (don't forget the series resistor), but not

enough current to run most relays, solenoids, or motors.

Short circuits on Arduino pins and excessive current can damage or destroy the

output pin, or damage the entire Atmega chip. It is often a good idea to connect

an OUTPUT pin to an external device in series with a 4700 or 1KΩ resistor.

8. digitalRead(pin):

Reads the value from a specified digital pin with the result either HIGH or

LOW. The pin can be specified as either a variable or constant (0-13).

value= digitalRead(Pin); // sets 'value' equal to the input pin

int inPin = 7; // pushbutton connected to digital pin 7

int val = 0; // variable to store the read value

void setup() {

 pinMode(inPin, INPUT); // sets the digital pin 7 as input

}

void loop() {

 val = digitalRead(inPin); // read the input pin

}

83

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

9. digitalWrite(pin, value):

Ouputs either logic level HIGH or LOW at (turns on or off) a specified digital

pin. The pin can be specified as either a variable or constant (0-13).

digitalWrite(pin, HIGH); // sets 'pin' to high

The following example reads a pushbutton connected to a digital input and

turns on an LED connected to a digital output when the button has been

pressed:

int led = 13; // connect LED to pin 13

int pin = 7; // connect pushbutton to pin 7

int value = 0; // variable to store the read value

void setup()

{

pinMode(led, OUTPUT); // sets pin 13 as output

pinMode(pin, INPUT); // sets pin 7 as input

}

void loop ()

{

value= digitalRead(pin); //sets 'value' equal to the input pin

digitalWrite(led, value); //sets 'led' to the button's value

}

10. analogRead(pin):

Reads the value from a specified analog pin with a 1O-bit resolution. This

function only works on the analog in pins (0-5). The resulting integer values

range from 0 to 1023.

value= analogRead(pin); //sets 'value' equal to 'pin'

Note: Analog pins unlike digital ones, do not need to be first declared as

INPUT nor OUTPUT.

int analogPin = A3; // potentiometer wiper (middle terminal) connected to analog pin 3

 // outside leads to ground and +5V

int val = 0; // variable to store the value read

void setup() {

 Serial.begin(9600); // setup serial

}

void loop() {

 val = analogRead(analogPin); // read the input pin

 Serial.println(val); // debug value

}

11. analogWrite(pin, value):

Writes a pseudo-analog value using hardware enabled pulse width modulation

(PWM) to an output pin marked PWM. On newer Arduinos with the

ATmega168 chip, this function works on pins 3, 5, 6, 9, 10, and 11. Older

Arduinos with an ATmega8 only support pins 9, 10, and 11. The value can be

specified as a variable or constant with a value from 0-255.

84

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

analogWrite(pin, value); //writes 'value' to analog 'pin'

A value of 0 generates a steady 0 volts output at the specified pin; a value of

255 generates a steady 5 volts output at the specified pin. For values in between

0 and 255, the pin rapidly alternates between 0 and 5 volts -the higher the value,

the more often the pin is HIGH (5 volts). For example, a value of 64 will be 0

volts three-quarters of the time, and 5 volts one quarter of the time; a value of

128 will be at 0 half the time and 255 half the time; and a value of 192 will be 0

volts one quarter of the time and 5 volts three-quarters of the time.

Because this is a hardware function, the pin will generate a steady wave after a

call to analogWrite in the background until the next call to analogWrite (or a

call to digitaiRead or digitaiWrite on the same pin).

Note: Analog pins unlike digital ones, do not need to be first declared as

INPUT nor OUTPUT.

The following example reads an analog value from an analog input pin,

converts the value by dividing by 4, and outputs a PWM signal on a PWM pin:

int led = 10; // LED with 220 resistor on pin 10

int pin = 0; // potentiometer on analog pin 0

int value; // value for reading

void setup(){} // no setup needed

void loop ()

{

value= analogRead(pin); // sets 'value' equal to 'pin'

value /= 4; // converts 0-1023 to 0-255

analogWrite(led, value); // outputs PWM signal to led

}

12. delay(ms):

Pauses your program for the amount of time as specified in milliseconds, where

1000 equals 1 second.

delay (1000); // waits for one second

13. millis():

Returns the number of milliseconds since the Arduino board began running the

current program as an unsigned long value.

value= millis(); // sets 'value' equal to millis()

Note: This number will overflow (reset back to zero), after approximately 9

hours.

10.6 Functions:

A function is a block of code that has a name and a block of statements that are

executed when the function is called. Custom functions can be written to

perform repetitive tasks and reduce clutter in a program. Functions are declared

by first declaring the function type. This is the type of value to be returned by

the function such as 'int' for an integer type function. If no value is to be

85

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

returned the function type would be void. After type, declare the name given to

the function and in parenthesis any parameters being passed to the function.

type functionName(parameters)

{

 statements;

}

The following integer type function delayVal() is used to set a delay value in a

program by reading the value of a potentiometer. It first declares a local

variable v, sets v to the value of the potentiometer which gives a number

between 0-1023, then divides that value by 4 for a final value between 0-255,

and finally returns that value back to the main program.

Example: Delay function program.

int delayVal()

{

 int v; // creat temporary variable ‘v’

 v=analogRead(pot); // read potentiometer value

 v/=4; // converts 0-1023 to 0-255

 return v; // return final value

}

Example: Summing function program.

int sum_func(int x,int y))

{

 int z=0; // initialize the value of z

 z=x+y; // read potentiometer value

 return z; // return final value

}

Note: In the main program the calling function are:

void loop()

{

 result=sum_func(5,6);

}

10.7 Variables:

A variable is a way of naming and storing a numerical value for later use by the

program. As their namesake suggests, variables are numbers that can be

continually changed as opposed to constants whose value never changes. A

variable needs to be declared and optionally assigned to the value needing to be

stored. The following code declares a variable called inputVariable and then

assigns it the value obtained on analog input pin 2:

int inputVariable = 0; // declares a variable and assigns value of

0

inputVariable = analogRead(2); // set variable to value of analog pin 2

'inputVariable' is the variable itself. The first line declares that it will contain

an int, short for integer. The second line sets the variable to the value at analog

pin 2. This makes the value of pin 2 accessible elsewhere in the code. Once a

86

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

variable has been assigned, or re-assigned, you can test its value to see if it

meets certain conditions, or you can use its value directly. As an example to

illustrate three useful operations with variables, the following code tests

whether the inputVariable is less than 100, if true it assigns the value 100 to

inputVariable, and then sets a delay based on inputVariable which is now a

minimum of 100:

if (inputVariable < 100) // tests variable if less than 100

{

inputVa riable = 100; // if true assigns value of 100

}

delay(inputVariable); // uses variable as delay

Note: Variables should be given descriptive names, to make the code more

readable. Variable names like tiltSensor or pushButton help the programmer

and anyone else reading the code to understand what the variable represents.

Variable names like var or value, on the other hand, do little to make the code

readable and are only used here as examples. A variable can be named any

word that is not already one of the keywords in the Arduino language.

1. Variable declaration:

All variables have to be declared before they can be used. Declaring a variable

means defining its value type, as in int, long, float, etc., setting a specified

name, and optionally assigning an initial value. This only needs to be done once

in a program but the value can be changed at any time using arithmetic and

various assignments. The following example declares that inputVariable is an

int, or integer type, and that its initial value equals zero. This is called a simple

assignment

int inputVariable = 0;

A variable can be declared in a number of locations throughout the program and

where this definition takes place determines what parts of the program can use

the variable.

2. Variable scope:

A variable can be declared at the beginning of the program before void setup(),

locally inside of functions, and sometimes within a statement block such as for

loops. Where the variable is declared determines the variable scope, or the

ability of certain parts of a program to make use of the variable.

A global variable is one that can be seen and used by every function and

statement in a program. This variable is declared at the beginning of the

program, before the setup() function.

A local variable is one that is defined inside a function or as part of a for loop.

It is only visible and can only be used inside the function in which it was

declared. It is therefore possible to have two or more variables of the same

name in different parts of the same program that contain different values.

87

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

Ensuring that only one function has access to its variables simplifies the

program and reduces the potential for programming errors.

The following example shows how to declare a few different types of variables

and demonstrates each variable's visibility:

int value; // 'value' is visible to any function

void setup()

{

 // no setup needed

}

void loop ()

{

for (int i=0; i<20;) // ‘i’ is only visible

{ // inside the for-loop

i++;

}

float f; // ‘f' is only visible

} // inside loop

a. Byte:

Byte stores an 8-bit numerical value without decimal points. They have a range

of 0-255.

byte someVariable = 180; // declares 'someVariable' as a byte type

b. Int:

Integers are the primary datatype for storage of numbers without decimal points

and store a 16-bit value with a range of 32,767 to -32,768.

int someVariable = 1500; // declares 'someVariable' as an integer type

Note: Integer variables will roll over if forced past their maximum or minimum

values by an assignment or comparison. For example, if x=32767 and a

subsequent statement adds 1 to x, x=x+1 or x++, x will then rollover and equal

-32,768.

c. Long:

Extended size datatype for long integers, without decimal points, stored in a 32-

bit value with a range of 2,147,483,647 to -2,147,483,648.

long someVariable = 90000; // declares 'someVariable' as a long type

d. Float:

A datatype for floating-point numbers, or numbers that have a decimal point.

Floating-point numbers have greater resolution than integers and are stored as a

32-bit value with a range of 3.4028235E+38 to -3.4028235E+38.

float someVariable = 3.14; // declares 'someVariable' as a floating-point type

88

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

Note: Floating-point numbers are not exact, and may yield strange results when

compared. Floating point math is also much slower than integer math in

performing calculations, so should be avoided if possible.

10.8 Arrays:

An array is a collection of values that are accessed with an index number. Any

value in the array may be called upon by calling the name of the array and the

index number of the value. Arrays are zero indexed, with the first value in the

array beginning at index number 0. An array needs to be declared and

optionally assigned values before they can be used.

int myArray[] = {value0, value1, value2 ... }

Likewise it is possible to declare an array by declaring the array type and size

and later assign values to an index position:

int myArray[5]; // declares integer array wl 6 positions

myArray[3] = 10; // assigns the 4th index the value 10

To retrieve a value from an array, assign a variable to the array and index

position:

x = myArray[3]; // x now equals 10

Arrays are often used in for loops, where the increment counter is also used as

the index position for each array value. The following example uses an array to

flicker an LED. Using a for loop, the counter begins at 0, writes the value

contained at index position 0 in the array flicker[], in this case 180, to the PWM

pin 10, pauses for 200ms, then moves to the next index position.

int ledPin = 10; // LED on pin 10

byte flicker [] = {180, 30, 255, 200, 10, 90, 150, 60}; // above array of 8

void setup() // different values

{

pinMode(ledPin, OUTPUT); // sets OUTPUT pin

}

void loop ()

{

for(int i=0; i<7; i++) // loop equals number of values in array

{

analogWrite(ledPin, flicker[i]); //write index value

delay(200); // pause 200ms

}

}

10.9 Arithmetic:

Arithmetic operators include addition, subtraction, multiplication, and division.

They return the sum, difference, product, or quotient (respectively) of two

operands.

y = y + 3;

X = X – 7;

i = j * 6;

89

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

r = r / 5;

The operation is conducted using the data type of the operands, so, for example,

9/4 results in 2 instead of 2.25 since 9 and 4 are int’s and are incapable of using

decimal points. This also means that the operation can overflow if the result is

larger than what can be stored in the data type.

If the operands are of different types, the larger type is used for the calculation.

For example, if one of the numbers (operands) are of the type float and the

other of type integer, floating point math will be used for the calculation.

Choose variable sizes that are large enough to hold the largest results from your

calculations. Know at what point your variable will rollover and also what

happens in the other direction e.g. (0-1) OR (0--32768). For math that requires

fractions, use float variables, but be aware of their drawbacks: large size and

slow computation speeds.

Note: Use the cast operator e.g. (int)myFloat to convert one variable type to

another on the fly. For example, i = (int) 3. 6 will set i equal to 3.

10.10 Compound Assignments:

Compound assignments combine an arithmetic operation with a variable

assignment. These are commonly found in for loops as described later. The

most common compound assignments include:

X ++ // same as X = X + 1, or increments x by +1

X - - // same as X = X - 1, or decrements x by -1

X + = y // same as X = X + y, or increments x by +y

X - = y // same as X = X - y, or decrements x by -y

X * = y // same as X = X * y, or multiplies x by y

X / = y // same as X = X / y, or divides x by y

Note: For example, x*=3 would triple the old value of x and re-assign the

resulting value to x.

10.11 Comparison operators:

Comparisons of one variable or constant against another are often used in if

statements to test if a specified condition is true. In the examples found on the

following pages, ?? is used to indicate any of the following conditions:

X = = y // x is equal to y

X ! = y // x is not equal to y

X < y // x is less than y

X > y // x is greater than y

X < = y // x is less than or equal to y

X > = y // x is greater than or equal to y

10.12 Logical operators:

Logical operators are usually a way to compare two expressions and return a

TRUE or FALSE depending on the operator. There are three logical operators,

AND, OR, and NOT, that are often used in if statements:

Logical AND

90

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

if (x > 0 && X < 5) // true only if both expressions are true

Logical OR

if (x > 0 II y > 0) // true if either expression is true

Logical NOT

if (!x>0) // true only if expression is false

10.13 Constants:

The Arduino language has a few predefined values, which are called constants.

They are used to make the programs easier to read. Constants are classified in

groups.

1. True/False:

These are Boolean constants that define logic levels. FALSE is easily defined

as 0 (zero) while TRUE is often defined as 1, but can also be anything else

except zero. So in a Boolean sense, -1, 2, and -200 are all also defined as

TRUE.

if (b == TRUE) ;

{

 doSomething;

}

2. High/Low:

These constants define pin levels as HIGH or LOW and are used when reading

or writing to digital pins. HIGH is defined as logic level 1, ON, or 5 volts while

LOW is logic level 0, OFF, or 0 volts.

digitalWrite(13, HIGH);

3. Input/Output:

Constants used with the pinMode() function to define the mode of a digital pin

as either INPUT or OUTPUT.

pinMode(13, OUTPUT);

4. If:

if statements test whether a certain condition has been reached, such as an

analog value being above a certain number, and executes any statements inside

the brackets if the statement is true. If false the program skips over the

statement. The format for an if test is:

if (someVariable ?? value)

{

 doSomething;

}

The above example compares someVariable to another value, which can be

either a variable or constant. If the comparison, or condition in parentheses is

91

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

true, the statements inside the brackets are run. If not, the program skips over

them and continues on after the brackets.

Note: Beware of accidentally using'=', as in if (x=l0), while technically valid,

defines the variable x to the value of 10 and is as a result always true. Instead

use'==', as in if (x==l0), which only tests whether x happens to equal the value

10 or not. Think of'=' as "equals" opposed to '==' being "is equal to".

5. If…else:

if... else allows for 'either-or' decisions to be made. For example, if you wanted

to test a digital input, and do one thing if the input went HIGH or instead do

another thing if the input was LOW, you would write that this way:

if (inputPin == HIGH)

{

doThingA;

}

else

{

doThingB;

}

else can also precede another if test, so that multiple, mutually exclusive tests

can be run at the same time. It is even possible to have an unlimited number of

these else branches. Remember though, only one set of statements will be run

depending on the condition tests:

if (inputPin < 500)

{

doThingA;

}

else if (inputPin >= 1000)

{

doThingB;

}

else

{

doThingC;

}

Note: An if statement simply tests whether the condition inside the parenthesis

is true or false. This statement can be any valid C statement as in the first

example, if (inputPin == HIGH). In this example, the if statement only checks

to see if indeed the specified input is at logic level high, or +5v.

92

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

6. For:
The for statement is used to repeat a block of statements enclosed in curly

braces a specified number of times. An increment counter is often used to

increment and terminate the loop. There are three parts, separated by

semicolons (;), to the for loop header:

for (initialization; condition; expression)

{

doSomething;

}

The initialization of a local variable, or increment counter, happens first and

only once. Each time through the loop, the following condition is tested. If the

condition remains true, the following statements and expression are executed

and the condition is tested again. When the condition becomes false, the loop

ends.

The following example starts the integer i at 0, tests to see if i is still less than

20 and if true, increments i by 1 and executes the enclosed statements:

for (int i=0; i<20; i++) // declares i, tests if less

{ // than 20, increments i by 1

digitalWrite(13, HIGH); // turns pin 13 on

delay (250); // pauses for 1/4 second

digitalWrite(13, LOW); // turns pin 13 off

delay (250); // pauses for 1/4 second

}

Note: The C for loop is much more flexible than for loops found in some other

computer languages, including BASIC. Any or all of the three header elements

may be omitted, although the semicolons are required. Also the statements for

initialization, condition, and expression can be any valid C statements with

unrelated variables. These types of unusual for statements may provide

solutions to some rare programming problems.

7. While:

while loops will loop continuously, and infinitely, until the expression inside

the parenthesis becomes false. Something must change the tested variable, or

the while loop will never exit. This could be in your code, such as an

incremented variable, or an external condition, such as testing a sensor.

while (someVariable ?? value)

{

doSomething;

}

The following example tests whether ‘someVariable’ is less than 200 and if true

executes the statements inside the brackets and will continue looping until

‘someVariable’ is no longer less than 200.

while (someVariable < 200) // tests if less than 200

{

doSomething; // executes enclosed statements

someVariable++; // increments variable by 1

}

93

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

8. Do…While:

The do loop is a bottom driven loop that works in the same manner as the while

loop, with the exception that the condition is tested at the end of the loop, so the

do loop will always run at least once.

do

{

doSomething;

} while (someVariable ?? value);

The following example assigns readSensors() to the variable 'x', pauses for 50

milliseconds, then loops indefinitely until 'x' is no longer less than 100:

do

{

x = readSensors(); // assigns the value of readSensors() to x

delay(50); // pauses 50 milliseconds

} while (x < 100); // loops if x is less than 100

9. min(x, y):

Calculates the minimum of two numbers of any data type and returns the

smaller number.

value= min(value, 100); // sets 'value' to the smaller of 'value' or 100, ensuring that

// it never gets above 100.

10. max(x, y):

Calculates the maximum of two numbers of any data type and returns the larger

number.

value= max(value, 100); // sets 'value' to the larger of 'value' or 100, ensuring that

// it is at least 100.

11. randomSeed(seed):

Sets a value, or seed, as the starting point for the random() function.

randomSeed(value); // sets 'value' as the random seed

Because the Arduino is unable to create a truly random number, randomSeed

allows you to place a variable, constant, or other function into the random

function, which helps to generate more random "random" numbers. There are a

variety of different seeds, or functions, that can be used in this function

including millis() or even analogRead() to read electrical noise through an

analog pin.

12. random(max) or random(min, max):

The random function allows you to return pseudo-random numbers within a

range specified by min and max values.

value= random(100, 200); // sets 'value' to a random number between 100-200

Note: Use this after using the randomSeed() function.

94

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

The following example creates a random value between 0-255 and outputs a

PWM signal on a PWM pin equal to the random value:

int randNumber; // variable to store the random value

int led = 10; // LED with 220 resistor on pin 10

void setup() {} // no setup needed

void loop ()

{

randomSeed(millis()); // sets millis() as seed

randNumber = random(255); // random number from 0-255

analogWrite(led, randNumber); // outputs PWM signal

delay(500); // pauses for half a second

}

13. Serial.begin(rate):

Opens serial port and sets the baud rate for serial data transmission. The typical

baud rate for communicating with the computer is 9600 although other speeds

are supported.

void setup()

{

Serial.begin(9600); // opens serial port sets data rate to 9600 bps

}

Note: When using serial communication, digital pins 0 (RX) and 1 (TX)

cannot be used at the same time.

Example: To start serial port and send data at a speed rate of 9600bps write the

following statements in the setup() function:

Serial.begin(Speed)

Serial.begin(Speed,config) // config: sets data, parity, and stop bits.

14. Serial.println(data):

Prints data to the serial port, followed by an automatic carriage return and line

feed. This command takes the same form as Serial. print(), but is easier for

reading data on the Serial Monitor.

Serial.println(analogValue); // sends the value of 'analogValue'

Note: For more information on the various permutations of the Serial. println()

and Serial. print() functions please refer to the Arduino website.

The following simple example takes a reading from analog pinO and sends this

data to the computer every 1 second.

void setup()

{

Serial.begin(9600); // sets serial to 9600bps

}

void loop ()

{

Serial.println(analogRead(0)); // sends analog value

delay(l000); // pauses for 1 second

}

95

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

10.14 Digital Input/Output:

Arduino pins default Configured to inputs (INPUT), so don't need to be

explicitly declared as inputs with pinMode() when you're using them as

inputs. Pins configured this way are said to be in a high-impedance

state. Input pins make extremely small demands on the circuit that they

are sampling, equivalent to a series resistor of 100 megohm in front of the

pin. This means that it takes very little current to move the input pin from

one state to another, and can make the pins useful for such tasks as

implementing a capacitive touch sensor, reading an LED as a photodiode,

or reading an analog sensor with a scheme such as RCTime.

This also means however, that pins configured as pinMode(pin, INPUT)

with nothing connected to them, or with wires connected to them that are

not connected to other circuits, will report seemingly random changes in

pin state, picking up electrical noise from the environment, or

capacitively coupling the state of a nearby pin.

Pullup Resistors with pins configured as INPUT: Often it is useful to

steer an input pin to a known state if no input is present. This can be done

by adding a pullup resistor (to +5V), or a pulldown resistor (resistor to

ground) on the input. A 10K resistor is a good value for a pullup or

pulldown resistor.

Prior to Arduino IDE, it was possible to configure the internal pull-ups in

the following manner:

pinMode(pin, INPUT); // set pin to input

digitalWrite(pin, HIGH); // turn on pullup resistors

digitalWrite(pin, LOW); // turn off pullup resistors

Pins configured as OUTPUT with pinMode() are said to be in a low-

impedance state. This means that they can provide a substantial amount

of current to other circuits. Arduino pins can source (provide positive

current) or sink (provide negative current) up to 40 mA (milliamps) of

current to other devices/circuits. This is enough current to brightly light

up an LED (don't forget the series resistor), or run many sensors, for

example, but not enough current to run most relays, solenoids, or motors.

https://playground.arduino.cc/Code/CapacitiveSensor
https://playground.arduino.cc/Learning/LEDSensor
https://docs.arduino.cc/tutorials/generic/capacitance-meter

96

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

Example: Turns an LED on for one second, then off for one second,

repeatedly.

Fig. (10-1): Arduino LED Blinking.

const int ledPin = LED_BUILTIN; // constants used here to set a LED pin number

void setup() {

 pinMode(LED_BUILTIN, OUTPUT); // initialize digital pin LED_BUILTIN as an output.

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

Example: Reads a digital input on pin 2, prints the result to the Serial

Monitor.

Fig. (10-2): Arduino Digital Read.

97

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

int pushButton = 2;

// the setup routine runs once when you press reset:

void setup() {

 // initialize serial communication at 9600 bits per second:

 Serial.begin(9600);

 // make the pushbutton's pin an input:

 pinMode(pushButton, INPUT);

}

// the loop routine runs over and over again forever:

void loop() {

 // read the input pin:

 int buttonState = digitalRead(pushButton);

 // print out the state of the button:

 Serial.println(buttonState);

 delay(1); // delay in between reads for stability

}

 Seven Segment Displays on the Arduino: Seven segment displays are

used in common household appliances like microwave ovens, washing

machines, and air conditioners. They’re a simple and effective way to

display numerical information like sensor readings, time, or quantities. In

this tutorial, we’ll see how to set up and program single digit and multi-

digit seven segment displays on an Arduino.

Fig. (10-3): 7-Segment Display.

https://www.amazon.com/a13071500ux0900-Cathode-Segment-Display-Digital/dp/B00EZBGUMC?keywords=seven+segment+display&qid=1636939735&sbo=RZvfv%2F%2FHxDF%2BO5021pAnSA%3D%3D&sr=8-3&linkCode=ll1&tag=circbasi-20&linkId=83a7d8a9959c79fc351d0736ae760429&language=en_US&ref_=as_li_ss_tl
https://www.amazon.com/gp/product/B008GRTSV6/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&tag=circbasi-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B008GRTSV6&linkId=e79812de3aa818ec88994540d9ef8a64

98

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

Example: This simple program will count up from zero to 9 and then

loop back to the start.

Segment pin Arduino Pin

A 6

B 5

C 2

D 3

E 4

F 7

G 8

DP 9

#include "SevSeg.h"

SevSeg sevseg;

void setup(){

byte numDigits = 1;

byte digitPins[] = {};

byte segmentPins[] = {6, 5, 2, 3, 4, 7, 8, 9};

bool resistorsOnSegments = true;

byte hardwareConfig = COMMON_CATHODE;

sevseg.begin(hardwareConfig, numDigits, digitPins, segmentPins, resistorsOnSegments);

sevseg.setBrightness(90);

}

void loop(){

for(int i = 0; i < 10; i++){

sevseg.setNumber(i, i%2);

delay(1000);

sevseg.refreshDisplay();

}

}

10.6 Analog Input/Output:

• Adjust the volume of a speaker continuously by turning a knob

• Adjust the brightness of a lamp continuously when the ambient light

level changes

• Adjust the speed of a motor continuously by varying how deep the

accelerator is pressed

In these situations, the variables are changing continuously. Continuous

signals that change with time are called analog signals. Arduino can

process analog signal with its built-in analog-to-digital converter (ADC).

99

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

However, it cannot produce real analog signals, as it lacks a digital-to-

analog converter (DAC). Of course, we can add an external DAC to the

Arduino, but we usually don’t need to do so. In most of the cases, a

technique called pulse-width modulation (PWM) is enough for controlling

the average power delivered by an electrical signal.

As mentioned, the Arduino has a built-in ADC. Essentially, this ADC

measures the voltage at a pin, and map the measured value to an integer

from 0 to 1023 linearly, i.e.

𝑂𝑢𝑡𝑝𝑢𝑡 =
𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

5
× 1023

In order to convert this value, use a function called map():

outputValue = map(sensorValue, 0, 1023, 0, 255);

At home, we usually adjust the brightness of a light bulb with a physical

knob. However, to control the brightness of the light bulb

programmatically, say, via your smartphone? This is one of the examples

of Internet of Things (IoTs). It turns out that it’s quite easy to control the

brightness of an LED with Pulse Width Modulation (PWM) signal.

PWM is essentially switching on and off the power very rapidly at a

particular frequency. By varying the amount of ‘on’ time and ‘off’ time in

the period of each cycle, we can control the average power output. The

proportion of ‘on’ time to the period of each cycle is known as the duty

cycle. 25% duty cycle means that the power is on for 25% of the time in

each cycle, 50% duty cycle means that the power is on for 50% of the

time in each cycle.

Fig. (10-3): 50%, 75% and 25% duty cycles.

https://www.arduino.cc/reference/en/language/functions/math/map/

100

Introduction to the Arduino Microcontroller

Mustansiriyah University

College of Engineering

Electrical Engineering Department

Third Year Class

Example: Reads an analog input pin, maps the result to a range from 0 to

255 and uses the result to set the pulse width modulation (PWM) of an

output pin. Also prints the results to the Serial Monitor.

Fig. (10-4): The Analog Input/Output Arduino System.

const int analogInPin = A0; // Analog input pin that the potentiometer is attached to

const int analogOutPin = 9; // Analog output pin that the LED is attached to

int sensorValue = 0; // value read from the pot

int outputValue = 0; // value output to the PWM (analog out)

void setup() {

Serial.begin(9600); // initialize serial communications at 9600 bps:

}

void loop() {

 sensorValue = analogRead(analogInPin); // read the analog in value:

 outputValue = map(sensorValue, 0, 1023, 0, 255); // map it to the range of the analog out:

 // change the analog out value:

 analogWrite(analogOutPin, outputValue);

 Serial.print("sensor = "); // print the results to the Serial Monitor:

 Serial.print(sensorValue);

 Serial.print("\t output = ");

 Serial.println(outputValue);

 // wait 2 milliseconds before the next loop for the analog-to-digital

 // converter to settle after the last reading:

 delay(2);

}

