#### **Note:**

In some systems,  $H(\omega)$  can be found using:

$$H(\omega) = \frac{Z_{out}}{Z_{in}} \qquad \dots (2-28)$$

## Ex 2-13:

Find  $H(\omega)$  for the system shown below:

#### **Solution:**

$$Z_{in} = R + \frac{1}{j\omega c}$$

$$Z_{out} = \frac{1}{j\omega c}$$

$$H(\omega) = \frac{Z_{out}}{Z_{in}} = \frac{\frac{1}{j\omega c}}{R + \frac{1}{j\omega c}} = \frac{1}{1 + j\omega Rc}$$



# **Spectral Density and Correlation:**

**Energy Spectral Density (ESD):** 

It shows the distribution of energy at each frequency component of <u>nonperiodic</u> signal.

$$\psi_f(\omega) = |F(\omega)|^2$$
 joule/Hz ... (2-29)

To find the total energy from the spectrum, we use:

$$E = \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi_f(\omega) d\omega \qquad \text{joule} \qquad \dots (2-30)$$

#### Power Spectral Density (PSD):

It shows the distribution of power at each frequency component of  $\underline{\textit{periodic}}$  signal.

$$S_f(\omega) = 2\pi \sum_{n=-\infty}^{\infty} |C_n|^2 \delta(\omega - n\omega_o)$$
 Watt/Hz ... (2-31)

To find the total power from the spectrum, we use:

$$P = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_f(\omega) d\omega \qquad \text{Watt} \qquad \dots (2-32)$$

#### **Note:**

Power spectral density exists for *deterministic* and *random* signals, such as noise.

### Ex 2-14:

A given voltage signal  $f(t) = 4\cos 20 \pi t + 2\cos 30 \pi t$  across  $2\Omega$  resistor.

- a) Determine PSD of f(t).
- b) Sketch  $S_f(\omega)$ .
- c) Calculate the average power [(i) using *time domain*, (ii) using *spectral density*]

## **Solution:**

(a) 
$$S_f(\omega) = 2\pi \sum_{n=-\infty}^{\infty} |C_n|^2 \delta(\omega - n\omega_o)$$
  
 $= 2\pi (1)^2 \delta(\omega + 30\pi) + 2\pi (2)^2 \delta(\omega + 20\pi) + 2\pi (2)^2 \delta(\omega - 20\pi) + 2\pi (1)^2 \delta(\omega - 30\pi)$ 

(b)



(c)

(i): 
$$P_{av} = \frac{1}{T} \int_0^T |f(t)|^2 dt = \frac{4^2}{2} + \frac{2^2}{2} = 8 + 2 = 10 \text{ volt}^2/R$$

$$P_{av} = \frac{10}{2} = 5 \text{ watt}$$
(ii):  $P_{av} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_f(\omega) d\omega = \frac{2}{2\pi} \int_0^{\infty} S_f(\omega) d\omega$ 

$$= \frac{1}{\pi} \int_0^{\infty} \left[ 8\pi \delta(\omega - 20\pi) + 2\pi \delta(\omega - 30\pi) \right] d\omega$$

$$= \frac{1}{\pi} \left( 8\pi + 2\pi \right) = 10 \text{ volt}^2/R$$

$$P_{av} = \frac{10v^2}{2\Omega} = 5 \text{ watt} \text{ (the same result)}$$

# **Correlation:**

It is the inverse Fourier Transform of the power spectral density. It is a measure of similarity between two signals or a signal and its replica shifted by  $\tau$  seconds.

$$R_f(\tau) = F^{-1}\{S_f(\omega)\}$$
 Watt ... (2-33)

#### **Cross Correlation:**

$$R_{xy}(\tau) = \int_{-\infty}^{\infty} x(t)y(t+\tau)dt$$
 Nonperiodic signals ...(2-34)a

$$R_{xy}(\tau) = \frac{1}{T} \int_0^T x(t)y(t+\tau)dt$$
 Periodic signals ...(2-34)b

#### **Auto Correlation:**

$$R_x(\tau) = \int_{-\infty}^{\infty} x(t)x(t+\tau)dt$$
 Nonperiodic signals ...(2-35)a

$$R_x(\tau) = \frac{1}{\tau} \int_0^T x(t)x(t+\tau)dt$$
 Periodic signals ...(2-35)b

#### **Properties of Correlation:**

(1) When  $\tau = o$ 

$$R_f(0) = E$$
 for energy signals

$$R_f(0) = P_{av}$$
 for power signals

$$(2) \quad R_f(\tau) \le R_f(0)$$

(3) If 
$$z(t) = x(t) + y(t)$$
 then,

$$R_z(\tau) = R_x(\tau) + R_{xy}(\tau) + R_{yx}(\tau) + R_y(\tau)$$

# Ex 2-15:

Determine and sketch the autocorrelation function of periodic square wave shown below:

# **Solution:**







The autocorrelation is useful for the detection of signals, in which masked by additive noise, see the following figures.

## **H.W**:

A sinusoidal waveform,  $3\sqrt{2}cos\omega_1 t$ , is added to a second  $4\sqrt{2}cos\omega_2 t$ , determine the *rms* value of the sum, if (a)  $\omega_1 = \omega_2$ , (b)  $\omega_1 \neq \omega_2$ 

Ans: a=7, b=5

### **H.W**:

For the system shown below, find:

- a) g(t)
- b) Average power at the system i/p & o/p.
- c) PSD of f(t) and g(t).
- d) Average power at system i/p using  $P_{av} = R_f(0)$



# **Problem Sheet of Signal Analysis**

- Q1: Sketch the single and double sided amplitude and phase spectrum of the following signals:
  - (a)  $f(t) = -7\sin(3\pi t) 5\cos(6\pi t + 90^\circ)$
  - (b)  $f(t) = -4\sin(10^6\pi t) + 8\cos(10^7\pi t + 170^\circ)$
  - (c)  $f(t) = \sum_{n=0}^{3} (-0.5)^n cos[n(\omega_0 t + 10^0)]$
- **Q2:** If f(t) is a periodic signal in the period  $-\frac{\tau}{2} < t < \frac{\tau}{2}$  and is given by:
  - f(t) = 2t; find the double-sided spectrum and the ratio of the power in first three harmonics to the total average power of the signal.
- Q3: Sketch the two sided amplitude and phase spectrum of the signals shown below.







