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Basic Static Assignment to Transportation Networks 

Uncongested Networks 

 

Introduction 

Assignment to uncongested networks is based on the assumption that costs do not depend on flows. 

In other words, path flows, and thus link flows, are obtained from path choice probabilities that 

are themselves computed from flow-independent link performance attributes and costs. 

Uncongested assignment models are used for the analysis of relatively uncongested road 

transportation systems (generally, link cost functions are almost flat with respect to flows for flow-

capacity ratios up to values around (0.50–0.70). They are also often used for analyzing public 

transport systems, for which costs may be assumed independent of link passenger flows if the 

available capacity is sufficient. Furthermore, uncongested network assignment models are a key 

component of congested network assignment models, which are described in the following 

sections.  

UNcongested network (UN) assignment models are defined by the demand model, expressing path 

flows as a function of path costs and demand flows: 

ℎ𝑈𝑁,𝑜𝑑 = ℎ𝑈𝑁,𝑜𝑑(𝑔𝑜𝑑; 𝑑𝑜𝑑) = 𝑑𝑜𝑑𝑃𝑜𝑑(−𝑔𝑜𝑑)∀𝑜𝑑                                      

ℎ𝑈𝑁 = ℎ𝑈𝑁(𝑔; 𝑑) = 𝑃(−𝑔)𝑑                                                                                                           1                  

 

The path costs g can be obtained from the link costs c with, and the link flows f corresponding to 

the path flows h is given. Figure 1 depicts these relationships graphically, applying the framework 

in Fig.1 to the case of uncongested network assignment. 

General uncongested network assignment models can also be expressed in terms of link variables 

by combining (1). The result is called the uncongested network assignment map, which associates 

a link flow vector with each demand flow vector and link cost vector, and can be expressed in an 

aggregate or disaggregate way as: 

𝑓𝑈𝑁 = 𝑓𝑈𝑁(𝑐; 𝑑) = ∑ 𝑑𝑜𝑑∆𝑜𝑑(−∆𝑜𝑑
𝑇 𝑐 − 𝑔𝑜𝑑

𝑁𝐴) ∀𝑐𝑜𝑑                                         

𝑓𝑈𝑁 = 𝑓𝑈𝑁(𝑐; 𝑑) = ∆𝑃(−∆𝑇𝑐 − 𝑔𝑁𝐴)𝑑   ∀𝑐                                                                                      2 

 

Note that link flows depend nonlinearly on the link costs, but linearly on the demand flows so that 

the effect of each O-D pair can be evaluated separately. In the next sections, probabilistic and 

deterministic path choice models, which lead respectively to stochastic and deterministic 

uncongested network assignment models and algorithms, are considered in turn.        
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Fig. 1 Schematic representation of uncongested 

network assignment models. 

 

The path costs g can be obtained from the link costs c with (1), and the link flows f corresponding 

to the path flows h. Figure 1 depicts these relationships graphically. 

General uncongested network assignment models can also be expressed in terms of link variables 

by combining (1) with (1) in (lecture, 5) and (3). The result is called the uncongested network 

assignment map, which associates a link flow vector with each demand flow vector and link cost 

vector, and can be expressed in an aggregate or disaggregate way as: 

𝑓𝑈𝑁 = 𝑓𝑈𝑁(𝑐; 𝑑) = ∑ 𝑑𝑜𝑑∆𝑜𝑑𝑝𝑜𝑑(−∆𝑜𝑑
𝑐𝑇 − 𝑔𝑜𝑑

𝑁𝐴
𝑜𝑑 )           ∀𝑐                                              

𝑓𝑈𝑁 = 𝑓𝑈𝑁(𝑐; 𝑑) = ∆𝑃(−∆𝑇𝑐 − 𝑔𝑁𝐴)𝑑            ∀𝑐                                                                         (2) 

Note that link flows depend nonlinearly on the link costs, but linearly on the demand flows so that 

the effect of each O-D pair can be evaluated separately. In the next sections, probabilistic and 

deterministic path choice models, which lead respectively to stochastic and deterministic 

uncongested network assignment models and algorithms, are considered in turn. 
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Models for Stochastic Assignment 

If path choice behavior is simulated through a probabilistic random utility model, the resulting 

assignment model is known as a Stochastic UNcongested network (SUN) assignment. In this case, 

the resulting link or path flows correspond to a situation in which, for each O-D pair, the perceived 

cost of the used paths is less than or equal to the cost of every other path; this can be viewed as a 

generalization of Wardrop’s first principle. Using the probabilistic path choice models, recall that 

each vector of link and path costs determines a unique choice probability vector. Hence the 

uncongested assignment map is given by the stochastic uncongested assignment function, f SUN(c; 

d). This function is a one-to-one correspondence that, for a given vector of link costs c, outputs a 

vector of link flows f belonging to the nonempty, compact, and convex set of feasible link flows 

(Fig. 2): 

𝑓𝑆𝑈𝑁 = 𝑓𝑆𝑈𝑁(𝑐, 𝑑) = ∑ 𝑑𝑜𝑑∆𝑜𝑑𝑝𝑜𝑑(−∆𝑜𝑑
𝑇 𝑐 − 𝑓𝑜𝑑

𝑁𝐴) ∈ 𝑆𝑓𝑜𝑑                  ∀𝑐                                       (3) 

Apart from the demand vector, the parameters of the stochastic uncongested assignment function 

include those of the path choice model (such as the coefficients of the systematic utility and the 

variance of the random residuals), and those of the supply model (such as travel times and 

generalized costs, together with the graph topology). Under certain assumptions on the path choice 

function, function (3) has features that will be useful in the analysis of stochastic equilibrium 

assignment models. 

Variance and covariance of link and path flow, are considered random variables. Assuming 

probabilistic path choice behavior (with known demand flows dod) and independent user choices, 

the path flows hod can be considered as realizations of multinomial random variables Hod. The 

values hod calculated with the stochastic uncongested network assignment model represents the 

means of Hod, for the most general case of demand models involving all choice dimensions. 

Therefore, the mean, variance, and covariance of the elements of the path flow random vector H 

can be expressed as: 

𝐸[𝐻𝑘] = ℎ𝑆𝑈𝑁,𝑘 = 𝑑𝑜𝑑𝑝𝑜𝑑,𝑘     ∀𝑜𝑑, 𝑘                 

𝑉𝑎𝑟[𝐻𝑘] = 𝑑𝑜𝑑𝑝𝑜𝑑,𝑘(1 − 𝑝𝑜𝑑,𝑘)  ∀𝑜𝑑, 𝑘  

𝐶𝑜𝑣[𝐻𝑘, 𝐻𝑗] {
−𝑑𝑜𝑑𝑝𝑜𝑑,𝑘𝑃𝑜𝑑,𝑗     𝑘, 𝑗 ∈ 𝐾𝑜𝑑             

𝑜                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
  ∀𝑜𝑑, 𝑘, 𝑗 
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Fig. 2 Stochastic UNcongested network (SUN) assignment with the path choice 

model.  

 

The first equation expresses the elements of the mean vector hSUN = E[H] of random vector H , 

and the last two equations give the elements of its variance-covariance matrix ΣH . If the path flow 

vector h = [hod]od is considered to be a realization of the random vector H , then the link flow vector 

f = ∆h, obtained from h by a linear transformation, is a realization of a link flow random vector F. 

Thus the mean vector and variance-covariance matrix of random vector F can be expressed in 

terms of the corresponding values of the path flow random variable, hSUN = E[H] and ΣH . In fact 

E[F] = ∆E[H] = ∆hSUN = fSUN and ΣF = ∆T ΣH∆. 

Assignment function computation. The link flow vector defined by the stochastic uncongested 

assignment function for a given link cost vector can easily be calculated when explicit path 

enumeration can be carried out.  

When paths are explicitly enumerated, path costs can be easily computed from link costs by 

applying the link–path incidence relationship (1) in (lecture, 5). Nonadditive costs can be easily 
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handled. Similarly, path flows can be obtained by applying the demand model and its extensions, 

and link flows can be computed from path flows using the congruence relationship. Eventually, 

EMPU, given by 

 Sod = Sod (∆𝑜𝑑
𝑇 𝑐−𝑔𝑜𝑑

𝑁𝐴),  

This is related to the path choice alternatives available for O-D pair od, which can also be readily 

calculated. 

It should be recalled that, for probit path choice models, it is not possible analytically to calculate 

choice probabilities or to evaluate the demand model. Nonetheless, unbiased estimates of path 

choice probabilities and of the corresponding path flows can be obtained in the probit case by 

applying a Monte Carlo sampling technique. The method generates a random vector realization, 

where each component of the vector is considered the perceived cost random residual of an O-D 

path. The corresponding path perceived cost is computed by adding the path systematic cost to the 

residual. The perceived costs of all O-D paths are computed in this way. For each O-D pair, the 

demand flow is assigned to the path with the minimum perceived cost. These steps are repeated 

for each of sample of m random vector realizations, and the resulting path flows are averaged. 

These averages are unbiased estimates of the stochastic uncongested network path flows: 
 

ℎ̅𝑚 = ∑ ℎ𝑗/𝑚
𝑗=1,𝑚                                                                                                                          

Where: 

ℎ𝑗 = hSPA(g + εj ) is the vector of path flows obtained by assigning the demand flow of each O-D 

pair to the shortest path w.r.t. the perceived path costs g + εj  

g is the vector of systematic path costs 

ε j ← MVN(0,Σ) is the j th (in a sample of m) perceived path cost random residual vector; in probit 

path choice, εj is obtained as a realization of a multivariate normal random variable with zero mean 

and variance-covariance matrix Σ 

hm is an unbiased estimate of the SUN assignment path flow vector, obtained from a sample of m 

perceived path cost vectors. 

Moreover, the average perceived shortest path cost, computed with respect to the paths that connect 

an O-D pair, is an unbiased estimate of EMPU associated with the O-D pair path choice 

alternatives.  

In practice, the path flow estimate ℎ̅𝑚can be obtained by evaluating the following recursive 

equations up to j = m, starting with j = 0 and ℎ̅0 = 0: 

 

 

𝑗 = 𝑗 + 1  

𝜀𝑗 ← 𝑀𝑉𝑁(0, ∑) 

ℎ̅𝑗 = ((𝑗 − 1)ℎ̅𝑗−1 + ℎ𝑗)/j 
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In applications, direct use of this approach can be computationally burdensome because of the 

need to generate multiple realizations of a multivariate normal random variable with nonzero 

covariance, εj ← MVN (0, Σ). On the other hand, the method allows arbitrary covariance structures 

(due, e.g., to positive or negative correlations between the perceived cost random residuals of 

different links). When this generality is not required, it is convenient to generate perceived path 

costs from link costs. 

 

Models for Deterministic Assignment 

Under the assumption of deterministic path choice behavior, the demand flow of each O-D pair is 

assigned to the minimum cost path(s) (i.e., paths with maximum systematic utility), whereas no 

flow is assigned to other paths. For this reason, the Deterministic UNcongested network (DUN) 

assignment is also known as an all-or-nothing assignment. In general, as has already been noted, 

multiple path choice probability vectors may correspond to a single vector of link and path costs. 

It follows that the general uncongested network assignment relationship (2) must be specified as 

the deterministic uncongested network assignment map: 
 

hDUN = hDUN(g; d)   ∈ Sh,  
 

Which is a one-to-many (or point-to-set) map between path costs and flows. In other words, 

because there may be several alternative minimum cost paths connecting an origin to a destination, 

a given path and link cost vector may correspond to multiple vectors of deterministic uncongested 

network paths and link flows. Consequently, the study of the properties of deterministic network 

loading frequently uses indirect formulations, equivalent to (2), based on the formulation of the 

deterministic demand model as a system of inequalities (3b) in (lecture 6). Summing the 

inequalities overall O-D pairs yields expression (4): 

 

𝑔𝑇(ℎ − ℎ𝐷𝑈𝑁) ≥ 0 ∀ℎ ∈ 𝑆ℎ                                                                                                              4 

 

The resultant path (or link) flows satisfy Wardrop’s first principle. Figure 3 presents an example 

of the deterministic uncongested network assignment model. 

 

If nonadditive path costs are zero, g NA = 0, total path costs coincide with additive costs  

g T = (gADD)T = cT ∆, and it is easy to verify that (4) is equivalent to: 

 

𝑐𝑇(𝑓 − 𝑓𝐷𝑈𝑁) ≥ 0   ∀𝑓 ∈ 𝑆𝑓                                                                                                                 5 

 

On the other hand, when there is nonadditive path costs expression (4) is equivalent to: 

 

𝑐𝑇(𝑓 − 𝑓𝐷𝑈𝑁) + (𝑔𝑁𝐴)𝑇(ℎ − ℎ𝐷𝑈𝑁) ≥ 0 ∀𝑓 = ∆ℎ, ∀ℎ ∈ 𝑆ℎ                                                         6 
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In order to facilitate the analysis and solution of model (6), it can be reformulated without any 

explicit reference to path flows. Let: 

GNA = (g NA) T h be the total nonadditive cost corresponding to a feasible path flow vector h  

𝐺𝐷𝑈𝑁
𝑁𝐴 = (gNA)T hDUN be the total nonadditive cost of the deterministic uncongested assignment of path 

flow vector hDUN 

The following relationship, involving link flows fDUN and total nonadditive cost 𝐺𝐷𝑈𝑁
𝑁𝐴 , holds for 

deterministic uncongested network assignment. 

𝑐𝑇(𝑓 − 𝑓𝐷𝑈𝑁) + 1(𝐺𝑁𝐴 − 𝐺𝐷𝑈𝑁
𝑁𝐴 ) ≥ 0                                  

∀𝑓 = ∆ℎ,   ∀𝐺𝑁𝐴 = (𝑔𝑁𝐴)𝑇ℎ ∀ℎ ∈ 𝑆ℎ                                                                                                 7 

 

 

Fig. 3 Deterministic UNcongested network (DUN) assignment, with the 

path choice model. 
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Model (7) can be made formally similar to model (6) by considering an additional pseudo link a, 

with which is associated an additional row within matrix ∆, with “flow” GNA and cost 1. The 

existence of solutions of any of the inequality systems (4) and (6) is assured because they are 

defined over compact feasible sets. Demand flows affect the solution because they appear in the 

definition of the feasible sets over which the problems are defined: 

Formulation with optimization models. Deterministic uncongested network assignments can also 

be formulated with an optimization model, more precisely, with a linear programming model. It is 

easy to verify that, if the nonadditive path costs are zero, the inequality system (5) is equivalent to 

an optimization model with linear objective function and a set of linear equality and inequality 

constraints as given below. 

𝑓𝐷𝑈𝑁(𝑐; 𝑑) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑐𝑇𝑓                                                                

𝑓 ∈ 𝑆𝑓(𝑑)                                                                                                                                            7 

 

Where the notation Sf(d) highlights the role of the demand flow vector in the definition of the 

feasible link flow set. If there are nonadditive path costs, the relation (7) becomes:   

(𝑓𝐷𝑈𝑁(𝑐; 𝑑), 𝐺𝐷𝑈𝑁
𝑁𝐴 ) = 𝑎𝑟𝑔 min

𝑓,𝐺𝑁𝐴

𝑐𝑇𝑓 + 1. 𝐺𝑁𝐴              

𝑓 = ∆ℎ,     𝐺𝑁𝐴 = (𝑔𝑁𝐴)𝑇ℎ,   ℎ ∈ 𝑆ℎ                                                                                              8 

 

These formulations are most easily understood by considering that the assignment of each demand 

flow to a minimum cost path corresponds to the case where the cost for each user and the total 

network cost is both minimum (the link costs being independent of flows).                 

Regardless of the model adopted, the link flow vector (or rather one of the vectors) resulting from 

deterministic uncongested network assignment can easily be calculated when using path choice 

models based on explicit path enumeration. When nonadditive path costs are equal to zero, a link 

flow vector can easily be obtained without explicit path enumeration using procedures based on 

algorithms for the calculation of minimum cost paths, or by directly solving optimization models 

(7) and (8). 

 

Shortest Path Algorithms 

Modeling of path choice behavior in assignment algorithms frequently involves identification of 

the shortest paths between pairs of nodes. In particular, assignment algorithms that incorporate 

deterministic path choice assumptions require the identification of the shortest path (or paths) 

between each pair of nodes, whereas stochastic uncongested network assignment algorithms that 

incorporate probabilistic path choice models sometimes compute shortest paths as a step in the 

processing. Furthermore, models that construct a relevant path set by applying a selective approach 
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and explicitly enumerating paths generally involve the solution of the shortest path problem. For 

example, the relevant path set could be specified as the set of paths that minimize different link 

attributes such as distance, monetary cost, and travel time; alternatively, they might be identified 

as the first k shortest paths with respect to some link attribute. 

If only elementary paths (those without loops) are relevant, there are a finite number of them and 

in principle, they could be enumerated for each pair of origin and destination nodes. The shortest 

path could then be identified by inspection. When explicit enumeration of all paths is not feasible 

due to their large number, as is often the case, algorithms that avoid explicit enumeration must be 

adopted. These are described here. 

Applications in transportation network assignment typically do not require the determination of 

the shortest path between all possible pairs of nodes, but only between pairs of origin and 

destination nodes (O-D pair) relative to centroids. It should be remembered that each centroid is 

represented network model by two unconnected nodes: an origin node, with only exiting links, and 

a destination node, with only entering links                          

Nonetheless, rather than computing the shortest path for each individual O-D pair, in turn, it is 

often easier to compute the set of shortest paths between an origin (or destination) node and all 

other network nodes (including the possible destination nodes), looping over the origins (or 

destinations) until shortest paths for all O-D pairs have been found. This approach is usually more 

computationally efficient than determining all O-D paths one at a time and corresponds more 

closely to the typical processing logic of assignment algorithms (which generally treat all flows 

from an origin or to a destination in one step). This section, therefore, describes the basic structure 

of algorithms for computing shortest paths from an origin node o to all network nodes (forward 

shortest paths), or from all network nodes to a destination node d (backward shortest paths). 

For simplicity, the performance variable associated with each link is referred to as cost, in as much 

as in practice it often represents a generalized transportation cost. However, it could just as well 

be any other performance measure (distance, travel time, etc.). Only link-additive performance 

measures are considered unless otherwise noted. Moreover, the link performance variable is 

assumed to be nonnegative. Let: 

ca = cij ≥ 0     be the cost on link    a = (i, j)  

Zi,j ≥ 0 be the cost of the shortest path between any pair of nodes i and j ; note that in general, it 

may happen that Zi,j ≠ Zj,i (due, e.g., to one-way streets, slopes, etc.). 

The shortest path costs satisfy the triangle inequality: 

Zi,j + Zj,k ≥ Zi,k            ∀i, j, k 

This can be seen by noting that if, for a pair of nodes i and k, there were a node j for which 

 Zi,j + Zj,k < Zi,k , then the cost of the path from i to k through node j would be less than Zi,k , 

contradicting the definition of Zi,k as the cost of the shortest path from i to k. Because i and k are 

arbitrary, this relationship holds in particular for origin and destination nodes, and the shortest 

paths between them. 
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The triangle inequality implies that link costs and shortest path costs satisfy the Bellman principle, 

which states that the shortest path is itself made up of shortest paths: 

If link (i, j) belongs to the shortest path between o and j 

Then           Zo,i + cij = Zo,j  otherwise  Zo,i + cij ≥ Zo,j 

More generally: 

If link (i, j) belongs to the shortest path between o and d 

Then          Zo,i + cij + Zj,d = Zo,d     otherwise       Zo,i + cij + Zj,d ≥ Zo,d 

If there is only one shortest path between each pair of nodes in a network, the second assertion of 

each of the above two formulations of the Bellman principle holds as a strict inequality. It can 

easily be seen that, for an uncongested network, the Bellman principle is equivalent to the first 

Wardrop principle discussed previously. 

It should be recognized that if there is only one shortest path between each pair of nodes (or, when 

there are several shortest paths if only one is considered), the set of shortest paths from an origin 

node o to the other network nodes forms a forward tree T (o) rooted at node o. Any forward tree 

can be described by specifying, for each node j, the unique link that enters it (or equivalently by 

specifying the initial node of this entering link). Similarly, the set of shortest paths from all network 

nodes to a destination node d forms a backward tree T (d) rooted at node d. Any backward tree can 

be described by specifying the unique link that exits from each node i (or equivalently by 

specifying the final node of this exiting link). The use of the same notation for forwarding trees 

from an origin o and for backward trees towards a destination d is not ambiguous, because we only 

consider trees rooted at the origin or destination nodes: in this case, the type of root (origin or 

destination) defines the type of tree (forward or backward). 

Given any forward tree T (o) from origin node o, let: 

XT(o),i ≥ 0    be the cost along the unique path from node o to node i in tree T(o) It follows that 

𝑋𝑇(0),𝑖 + 𝑐𝑖𝑗 = 𝑋𝑇(0),𝑗              ∀(𝑖, 𝑗) ∈ 𝑇(0)                           

A tree T (o) from the origin node o is the shortest path tree (or is one such tree when there are 

multiple shortest paths between some pairs of nodes) if and only if the following condition, is 

deduced from the Bellman principle, is verified. 

𝑋𝑇(0),𝑖 + 𝑐𝑖𝑗 ≥ 𝑋𝑇(0),𝑗                    ∀(𝑖, 𝑗) ∉ 𝑇(0)                                                                              9           

In this case, the values 𝑋𝑇(0),𝑖 are the shortest path costs Zo,i.  

Similarly, given a backward tree T (d) towards destination node d, let:   

Xi,T(d) ≥ 0 be the cost along the unique path from node i to destination d in tree T (d) 

It follows that 
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𝑐𝑖𝑗 + 𝑋𝑗,𝑇(𝑑) ≥ 𝑋𝑖,𝑇(𝑑)           ∀(𝑖, 𝑗) ∈ 𝑇(𝑑)                                                           

In this case, a tree T (d) to destination node d is the shortest path tree (or is one such tree when 

there are multiple shortest paths between some pairs of nodes) if and only if the following condition 

is verified. 

𝑐𝑖𝑗 + 𝑋𝑗,𝑇(𝑑) ≥ 𝑋𝑖,𝑇(𝑑)          ∀(𝑖, 𝑗) ∉ 𝑇(𝑑)                                                                                       10 

In this case the values 𝑋𝑖,𝑇(𝑑) are again the shortest path costs Zi,d .      

The algorithms commonly used to compute forward (resp., backward) shortest-path trees are based 

on the iterative updating of the values 𝑋𝑇(0),𝑖 (resp., 𝑋𝑗,𝑇(𝑑)), called the node labels. In each 

iteration, a node is chosen, and the labels of immediately downstream (resp., upstream) nodes are 

examined and updated as required. Iterations continue until condition (9) (resp., (10)) holds 

everywhere, at which point the minimum path costs have been found. Bookkeeping operations 

carried out along with the label updates enable the specific minimum path to (resp., from) each 

node to be traced.       

The number of steps that an algorithm requires to compute the minimum path tree depends on its 

strategy for choosing, in each iteration, the node at which to verify whether further updating steps 

are needed.                                                                

Examples of updates for a forward tree from origin o, and for a backward tree towards destination 

d, are shown in Figs. 4a and 4b. 

When there are multiple shortest paths between a particular O-D pair, the set of shortest paths from 

an origin (or towards a destination) is no longer a tree. The algorithms presented above will 

determine only one of the shortest paths; the particular one identified depends on the order in which 

the nodes are examined. The algorithms can easily be modified to compute all possible shortest 

paths, although in practice this is rarely done. 
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Algorithms for Uncongested Network Deterministic Assignment 

Under the assumption of deterministic path choice behavior, all users traveling from an origin to 

a destination choose the shortest path between them; this leads to deterministic uncongested 

network assignment. Algorithms for DUN assignment are known as all-or-nothing assignment 

algorithms. 

As observed above, if multiple shortest paths connect an O-D pair, then path flows, and therefore 

link flows, are not uniquely defined. However, shortest path algorithms usually compute a single 

path between each O-D pair. The specific path identified depends on the implementation details 

of the algorithm and in particular on the ordering of the nodes. 

 

Fig. 4 Example of forward (a) and backward (b) label-setting shortest path 

algorithms. 
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Link flows can therefore be calculated by assigning all the flow of each O-D pair to the links of 

the shortest O-D path, and nothing to the links of other paths. In practice, all-or-nothing algorithms 

generally process the entire tree of shortest paths from an origin or to a destination, rather than 

individual shortest O-D paths. They can be implemented with two different approaches. Both start 

with an empty network. 

In the sequential approach, once the shortest path tree from an origin o has been calculated, the 

O-D demand dod from the origin towards each destination d is added to the flows on all the links 

on the path from o to d. The DUN link flows result when all O-D specific flows have been 

accumulated on each link in this way. An example of the sequential algorithm is given in Fig. 4. 

The procedure is analogous if the shortest path tree towards each destination d is calculated. 

In contrast to the sequential approach, other DUN assignment algorithms follow a simultaneous 

approach. Simultaneous algorithms are computationally more efficient and can be extended to 

DUN assignment models for transit networks (shortest hyperpaths). These algorithms are 

particularly efficient if each shortest path tree designates the nodes in order of increasing minimum 

cost from the origin (or to the destination). As discussed above, such an order is automatically 

obtained from label-setting shortest-path algorithms. 

Simultaneous algorithms from an origin are based on the calculation of the flow entering each 

node, defined as the sum of the flows on the links incident to the node. Considering one origin o 

at a time, each destination node d is initially assigned the corresponding demand flow dod as its 

entering flow; all other nodes are tentatively assigned a zero entering flow. Once the tree of shortest 

paths from origin o has been calculated, the algorithm examines each node i in decreasing order 

of minimum cost, starting with the node farthest from origin o (i.e., the node i with the highest 

value Zoi), and working backward until o is reached. The flow entering node i is assigned to the 

unique previous link in the shortest path tree and added to the flow entering the initial node of this 

link. The order adopted is such that, when node i is examined, all nodes farther from the origin 

have already been examined. Consequently, there cannot be any node still to be examined from 

which the flow could contribute to the flow entering node i. 

For each O-D pair od, the EMPU associated with deterministic path choice is given by the cost on 

the shortest path, Sod = Zod. An example of the application of a simultaneous algorithm is given in 

Fig. 5. The procedure is analogous if the shortest path trees towards each destination d are 

calculated. 
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Fig. 5 Example of sequential forward algorithm for DUN assignment. 


