
5. Introduction to Procedures

Topics:

 The module SimpleGraphics

 Creating and Showing figures

 Drawing Rectangles, Disks, and Stars

 Optional arguments

 Application Scripts

Procedures

We continue our introduction to functions
with a focus on procedures.

Procedures are functions that do not
return a value.

Instead, they “do something.”

Graphics is a good place to illustrate the
idea.

The Module SimpleGraphics
Has Eight Procedures

MakeWindow

ShowWindow

DrawRect

DrawDisk

DrawStar

SimpleGraphics.py

We will use this
module to make
designs that
involve
rectangles,
disks, stars, etc DrawLineSeg

Title

DrawText

Examples

Looks like we will be able to draw tilted rectangles

Example

How
does
color
work?

What
if we
had
100 rows
each with
100 stars ?

Anticipating loops.

Example

Xeno’s Paradox: Will we ever reach the right edge?

Example

White Rectangle + Red Rectangle + White Disk + Red Disk + Tilted White Star

Example

Let’s write a function to draw this:

And then apply it two times:

Functions calling other functions.

After We Learn About Iteration…

What if there were billions and billions of stars? Will need loops.

After We Learn About Iteration…

How long before the square is covered? Need loops.

After We Learn About Recursion…

Random Mondrian. Repeatedly cut a rectangle into 4 smaller rectangles.

We now show how to use the eight procedures
in SimpleGraphics:

 MakeWindow

 ShowWindow

 DrawRect

 DrawDisk

 DrawStar

 DrawLineSeg

 DrawText

 Title

A Quick Tour Through the
SimpleGraphics Module

Each of these
procedures has several
“options.” We do not
cover everything in the
lecture slides. Labs and
demo scripts cover
these procedures in
greater detail.

First: Create a Figure Window

You cannot create any designs until you
have a figure into which you can “drop”
rectangles, disks, and stars.

MakeWindow

from SimpleGraphics import *

n = 5

MakeWindow(n)

Here we have created
a figure with labeled axes
that is ready to display
things in the square defined
by
 -5<=x<=+5, -5<=y<=5

MakeWindow

from SimpleGraphics import*

n = 5

MakeWindow(n,bgcolor=PURPLE)

The “default” is to “paint”
the figure window white.

So this is what you must
do to set the background
color to something
different.

MakeWindow

from SimpleGraphics import*

n = 5

MakeWindow(n,labels=False)

The “default” is to label
the axes.

So this is what you must
do to suppress the
labeling.

We are using import * to save space and because it is such a tiny module.

Color in simpleGraphics

The module has thirteen “built-in” colors.

If a SimpleGraphics procedure wants a color,
just “hand over” one of these:

YELLOW PURPLE CYAN ORANGE

RED BLUE GREEN MAGENTA

PINK WHITE BLACK LIGHTGRAY

 DARKGRAY

There is more flexibility than this. More later.

MakeWindow

from SimpleGraphics import*

n = 5

MakeWindow(n,labels=False,bgcolor=ORANGE)

You can turn off labeling
and specify a color
in the same call to
MakeWindow.

Optional Arguments

The function MakeWindow has four arguments.

Three of the arguments are “optional”.

When there are several optional arguments,
their order is immaterial. These are equivalent:

 MakeWindow(n,labels=False,bgcolor=ORANGE)

 MakeWindow(n,bgcolor=ORANGE,labels=False)

Note: You need the “assignment” for an optional argument.
 This is illegal: MakeWindow(5,False,ORANGE)

Let’s Draw a Rectangle
with DrawRect

You must tell DrawRect

 - the center of the rectangle.
 - the horizontal dimension of the rectangle
 - the vertical dimension of the rectangle

You have the option of telling DrawRect

 - the fill color
 - the width of the perimeter highlight
 - the color of the perimeter highlight
 - the rotation angle

DrawRect

from SimpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; L=5; W=3

DrawRect(x,y,L,W)

ShowWindow()

The default is a rectangle
with no fill color. So all you
get is the perimeter.

Nothing is
actually displayed
until this command
is executed. More
later.

DrawRect

from SimpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; L=5; W=3

DrawRect(x,y,L,W,FillColor=MAGENTA)

ShowWindow()

Use the optional color
argument to specify a fill
color.

DrawRect

from simpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; L=5; W=3

DrawRect(x,y,L,W,FillColor=MAGENTA,EdgeWidth=6)

ShowWindow()

Use the optional EdgeWidth
argument to specify the
boldness of the perimeter
highlight. The default
is EdgeWidth = 1

If you don’t want any perimeter highlight, set EdgeWidth=0

DrawRect

from SimpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; L=5; W=3

DrawRect(x,y,L,W,color=MAGENTA,theta=30)

ShowWindow()

Use the optional theta
argument to specify the
counterclockwise rotation
of the rectangle about its
center. (Angle in degrees.)

The default rotation angle is zero.

Let’s Write a Script to Do This

The squares are 9x9, 7x7, 5x5, 3x3, and 1x1.

Nested Squares

DrawRect(0,0,9,9,FillColor=MAGENTA,

 EdgeWidth=10)

DrawRect

DrawRect(0,0,7,7,FillColor=CYAN,

 EdgeWidth=8)

Nested Squares

DrawRect(0,0,5,5,FillColor=YELLOW,

 EdgeWidth=6)

DrawRect

DrawRect(0,0,3,3,FillColor=PURPLE,

 EdgeWidth=4)

Nested Squares

DrawRect(0,0,1,1,EdgeWidth=5)

Nested Squares

MakeWindow(6,bgcolor=WHITE)

DrawRect(0,0,9,9,FillColor=MAGENTA,

 EdgeWidth=10)

DrawRect(0,0,7,7,FillColor=CYAN,

 EdgeWidth=8)

DrawRect(0,0,5,5,FillColor=YELLOW,

 EdgeWidth=6)

DrawRect(0,0,3,3,FillColor=PURPLE,

 EdgeWidth=4)

DrawRect(0,0,1,1,EdgeWidth=5)

ShowWindow()

Let’s Draw a Disk
with DrawDisk

You must tell DrawDisk

 - the center of the disk.
 - the radius of the disk

You have the option of telling DrawDisk

 - the fill color
 - the width of the perimeter highlight
 - the color of the perimeter highlight

DrawDisk

from SimpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; r=4

DrawDisk(x,y,r)

ShowWindow()

The default is a circle
with no fill color. So all you
get is the perimeter.

DrawDisk

from SimpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; r=4

DrawDisk(x,y,r,FillColor=MAGENTA)

ShowWindow()

Use the optional color
argument to specify a fill
color.

DrawDisk

from SimpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; r=4

DrawDisk(x,y,r,FillColor=MAGENTA,EdgeWidth=6)

ShowWindow()

Use the optional EdgeWidth
argument to specify the
boldness of the perimeter
highlight. The default
is EdgeWidth = 1

If you don’t want any perimeter highlight, set EdgeWidth=0

Let’s Draw This
Rules:

Big circle center at (-4,0)
with radius 4.

Circles are tangent to each
other. Centers on x-axis.

Each circle has half the
radius of its left neighbor.

Draw the First Disk

x = -4

r = 4

DrawDisk(x,0,r,FillColor=MAGENTA,EdgeWidth=0)

Draw the Second Disk

x = x + 1.5*r

r = r/2

DrawDisk(x,0,r,FillColor=CYAN,EdgeWidth=0)

Draw the Third Disk

x = x + 1.5*r

r = r/2

DrawDisk(x,0,r,FillColor=MAGENTA,EdgeWidth=0

)

Overall

x = -4; r = 4

DrawDisk(x,0,r,FillColor=MAGENTA,EdgeWidth=0)

x = x + 1.5*r; r = r/2

DrawDisk(x,0,r,FillColor=CYAN,EdgeWidth=0)

x = x + 1.5*r; r = r/2

DrawDisk(x,0,r,FillColor=MAGENTA,EdgeWidth=0)

x = x + 1.5*r; r = r/2

DrawDisk(x,0,r,FillColor=CYAN,EdgeWidth=0)

Notice the repetition of the x and r updates. Simpler than figuring
the centers and radii “by hand”. Also gets us ready for loops.

Let’s Draw a Star
with DrawStar

You must tell DrawStar

 - the center of the star.
 - the radius of the star

You have the option of telling DrawStar

 - the fill color
 - the width of the perimeter highlight
 - the color of the perimeter highlight
 - the rotation angle

DrawStar

from SimpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; r=4

DrawStar(x,y,r)

ShowWindow()

The default is a star
with no fill color. So all you
get is the perimeter.

Note: the radius of a star is the
distance from its center to
any tip.

DrawStar

from SimpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; r=4

DrawStar(x,y,r,FillColor=MAGENTA)

ShowWindow()

Use the optional color
argument to specify a fill
color.

DrawStar

from SimpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; r=4

DrawStar(x,y,r,FillColor=MAGENTA,EdgeWidth=6)

ShowWindow()

Use the optional EdgeWidth
argument to specify the
boldness of the perimeter
highlight. The default
is EdgeWidth = 1

If you don’t want any perimeter highlight, then set EdgeWidth=0

DrawStar

from SimpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; r=4

DrawStar(x,y,r,FillColor=MAGENTA,theta=18)

ShowWindow()

Use the optional theta
argument to specify the
counterclockwise rotation
of the rectangle about its
center. (Angle in degrees.)

The default rotation angle is zero.

Let’s Draw a Line Segment
with DrawLineSeg

You must tell DrawLineSeg

 - the first endpoint of the segment
 - the second endpoint of the segment

You have the option of telling DrawLineSeg

 - the color of the segment
 - the line width of the segment

DrawLineSeg

The default line color is BLACK.

The default line width is 1.

from SimpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

a = -3; b = -2; c = 4; d = 2

DrawLineSeg(a,b,c,d,LineWidth=4,

 LineColor='MAGENTA')

ShowWindow()

Let’s “Draw” Text
with DrawText

You must tell DrawText

 - the location of the text.
 - the text (a string) that is to be displayed

You have the option of telling DrawText

 - the color of the text
 - the size of the font

DrawText

from SimpleGraphics import*

MakeWindow(3,bgcolor=YELLOW)

x=0; y=0; s = 'This is the origin.'

DrawText(x,y,s,FontSize=24,FontColor='MAGENTA')

DrawDisk(0,0,.03,FillColor=BLACK)

ShowWindow()

The default text color is BLACK.

The default font size is 10.

The lower left corner of the first
character is roughly at (x,y).

Let’s Talk About Color

The rgb Representation

[0.57 , 0.17, 0.93]

A color is a triple of numbers, each between
zero and one.

The numbers represent the amount of red,
green, and blue.

This is purple:

The Module SimpleGraphics
Has 8 Procedures and Data

SimpleGraphics.py

Data

In this case
the data
encodes the
“rgb” values
of thirteen
colors

The SimpleGraphics Colors

YELLOW = [1.00,1.00,0.00]

CYAN = [0.00,1.00,1.00]

MAGENTA = [1.00,0.00,1.00]

RED = [1.00,0.00,0.00]

GREEN = [0.00,1.00,0.00]

BLUE = [0.00,0.00,1.00]

WHITE = [1.00,1.00,1.00]

BLACK = [0.00,0.00,0.00]

PURPLE = [0.57,0.17,0.93]

DARKGRAY = [0.33,0.33,0.33]

LIGHTGRAY = [0.67,0.67,0.67]

ORANGE = [1.00,0.50,0.00]

PINK = [1.00,0.71,0.80]

These are called
“Global Variables”

Convention: Global Variable Names should be UPPER CASE.

Access

from SimpleGraphics import*

MakeWindow(5,bgcolor=YELLOW)

x=0; y=0; L=5; W=3

DrawRect(x,y,L,W,FillColor=MAGENTA)

ShowWindow()

When a module is imported, it gives access to
both its functions and its global variables.

Take a look at the Demos ShowRect.py, ShowDisk.py, and ShowStar.py

rgb Lists

Things like [0.74,1.00,0.34] are called rgb

lists.

Rules: Square brackets, 3 numbers separated by

commas, each number between 0 and 1.

First number = red value

Second number = green value

Third number = blue value

The bigger numbers mean more of that color.

Using rgb Lists

Instead of using the predefined colors you can

make up and use your own fill color, e.g.

 c = [0.74,1.00,0.34]

 DrawDisk(0,0,1,FillColor=c)

Google “rgb values” to look at huge tables of

colors and rgb values.

Title

from SimpleGraphics import*

r=0.8,g=0.4, b=0.8

MakeWindow(5,bgcolor=[r,g,b])

s = ‘r=%4.2f g=%4.2f b = %4.2f’ % (r,g,b)

Title(s,FontSize=20)

ShowWindow()

You can put a title
at the top of the
figure window.

A Note on Managing Figures

MakeWindow(etc)

MakeWindow(etc)

MakeWindow(etc)

ShowWindow()

Three figure windows
will be produced.

The green code defines
what is in the first
window.

The pink and blue code
set up the second
and third windows.

The ShowWindow says.
“Show all the windows.”
 Take a look at the Demos ShowDrawRect.py, ShowDrawStar.py, etc.

A Final Example

Shows two things.

1. You can write a module that uses other

modules that YOU have written.

2. You can have a module that has both function

definitions and a script that can be executed.

A Final Example

We write a procedure to draw this

and a script that calls it twice:

We put them both in the SAME module….

A Final Example

from simpleGraphics import *

def DrawTile(x,y,r,c1,c2,c3):

 DrawRect(x,y,2*r,2*r,FillColor=c1)

 DrawDisk(x,y,r,FillColor=c2)

 DrawStar(x,y,r,FillColor=c3)

if __name__ == '__main__':

 MakeWindow(6,bgcolor=BLACK,labels=False)

 DrawTile(3,0,2,MAGENTA,PURPLE,YELLOW)

 DrawTile(-3,0,2,MAGENTA,PURPLE,YELLOW)

 ShowWindow()

 Tile.py

See the Demo Tile.py In command mode, enter python Tile.py

A Final Example

from SimpleGraphics import *

def DrawTile(x,y,r,c1,c2,c3):

 DrawRect(x,y,2*r,2*r,color=c1)

 DrawDisk(x,y,r,color=c2)

 DrawStar(x,y,r,color=c3)

if __name__ == '__main__':

 MakeWindow(6,bgcolor=BLACK,labels=False)

 DrawTile(3,0,2,MAGENTA,PURPLE,YELLOW)

 DrawTile(-3,0,2,MAGENTA,PURPLE,YELLOW)

 ShowWindow()

 Tile.py

See the demo Tile.py In command mode, enter python Tile.py

This is called
an “Application
Script”

So a Module Can Look Like This

if __name__ == '__main__':

Data

Function
Definitions

Gotta have

Application
 Script

Those are “double underscores” in the if statement.

Summary

1. Procedures “look like” functions without
 the “return.” They “do stuff” but do not
 return values

2. Graphics procedures were used to
 illustrate the idea.

3. Color can be encoded with three numbers
 that indicate the amount of red, green,
 and blue.

4. A single module can house data, functions,
and a script at the same time

