
1. The Assignment Statement
and Types

Topics:
Python’s Interactive Mode

Variables

Expressions
Assignment
Strings, Ints, and Floats

The Python Interactive Shell

Python can be used in a way that reminds
you of a calculator. In the ``command shell
of your system simply type

python

and you will be met with a prompt…

>>>

Let’s Compute the Area of a
Circle Using Python

>>> r = 10

>>> A = 3.14*r*r

>>> print)A)

314.0

Programming vs Math

>>> r = 10

>>> A = 3.14*r*r

>>> print)A)

314.0

Notation is different.

In Python, you can’t say A = 3.14xrxr

Programming vs Math

>>> r = 10

>>> A = 3.14*r**2

>>> print (A)

314.0

Notation is different.

In Python you indicate exponentiation with **

Programming vs Math

>>> r = 10

>>> A = 3.14*r**2

>>> print (A)

314.0

r and A are variables. In algebra, we have

the notion of a variable too. But there are

some big differences.

Variables

>>> r = 10

>>> A = 3.14*r**2

r -> 10 314.0A ->

A variable is a named memory location. Think of a
variable as a box.

It contains a value. Think of the value as the
contents of the box.

“ The value of r is 10. The value of A is 314.0.”

The Assignment Statement

The “= “ symbol indicates assignment.

The assignment statement r = 10 creates the
variable r and assigns to it the value of 10.

>>> r = 10

r -> 10

Formal: “ r is assigned the value of 10” Informal: “r gets 10”

The Assignment Statement

A variable can be used in an expression like
3.14*r**2.

The expression is evaluated and then stored.

>>> r = 10

>>> A = 3.14*r**2

r -> 10

AssignmentStatement: WHERE TO PUT IT = RECIPE FOR A VALUE

A -> 314.0

Order is Important

Math is less fussy:

A = 3.14*r**2 where r = 10

>>> A = 3.14*r**2

>>> r = 10

NameError: name ‘r’ is not defined

Assignment vs. “Is Equal to”

In Math “=“ is used to say what is on the left
equals what is on the right.

In Python, “=“ prescribes an action, “evaluate
the expression on the right and assign its
value to the variable named on the left.”

>>> r = 10

>>> 3.14*r**2 = A

SyntaxError: can’t assign to an

operator

The Assignment Statement

Here we are assigning to S the area of a

semicircle that has radius 10.

>>> r = 10

>>> A = 3.14*r**2

>>> S = A/2

r -> 10

AssignmentStatement: WHERE TO PUT IT = RECIPE FOR A VALUE

A ->

S ->

314.0

157.0

The Key 2-Step Action Behind
Every Assignment Statement

< variable name > = < expression>

1. Evaluate the expression on the right hand
side.

2. Store the result in the variable named on the
left hand side.

Naming Variables

>>> radius = 10

>>> Area = 3.14*radius**2

radius -> 10 Area -> 314.0

Rule 1. Name must be comprised of digits, upper
case letters, lower case letters, and the
underscore character “_”

Rule 2. Must begin with a letter or underscore
A good name for a variable is short but suggestive of its role: Circle_Area

Precedence

the order of evaluation?
Q. In an arithmetic expression, what is

A. Exponentiation & negation comes before
multiplication & division which in turn

It is a good habit to use parenthesesif there is the slightestambiguity.

This:

come before addition & subtraction.

Is the same as:
A + B*C

-A**2/4

A*B/C*D

A + (B*C)

-(A**2)/4

((A*B)/C)*D

Revisit Circle Area

>>> r = 10

>>> A = (22/7)*r**2

>>> print (A)

300.0

It seems that Python evaluates (22/7) as 3
instead of 3.142… WHY?

A differentkind of arithmetic. Wehave a related experiencehere.
11+3 = 2 in “clock arithmetic”

Integers and Decimals

In math we distinguish between integer
numbers and decimal numbers.

Integer Numbers:

100, 0,-89, 1234567

Decimal Numbers:

-2.1, 100.01, 100.0, 12.345

Integers and Decimals

There are different kinds of division.

Integer Division:

30/8 is 3 with a remainder of 6

Decimal Division:

30/8 is 3.75

int vs float

In Python, a number has a type.

The int type represents numbers as
integers.

The float type represents numbers as
decimals.

Importantto understand the differences and the interactions

Int and Float Arithmetic

To get the remainder, use %. Python “knows” that the values storedin x and y have
type int because thereare no decimal points in those assignments.

>>> x = 30

>>> y = 8

>>> q = x/y

>>> print (q)

3.75

>>> r = x%y

>>> print (r)

6

Strings

So far we have discussed computation with

numbers.

Now we discuss computation with text.

We use strings to represent text.

You are a “string processor”when you realize 7/4 means July 4 and not 1.75!

Strings

Strings are quoted characters. Here are three

examples:

>>> s1 = ‘abc’

>>> s2 = ‘ABC’

>>> s3 = ‘ A B C ‘

s1, s2, and s3 are variables with string value.

Strings

Nothing special about letters…

>>> Digits = ‘1234567890’

>>> Punctuation = ‘!:;.?’

>>> Special = @#$%^&*()_-+=‘

Basically any keystroke but there are some

exceptions and special rules. More later.

Here is one: ‘Sophie”’”s Choice’ i.e., Sophie’sChoice

Strings are Indexed

>>> s = ‘The Beatles’

Subcriptingfrom zero createsa disconnect: ‘T’ is not the first character.

T h e B e a t l e ss -->

0 1 2 3 4 5 6 7 8 9 10

The characters in a string can be referenced

through their indices. Called “subscripting”.

Strings are Indexed

The square bracketnotation is used. Note, a single character is a string.

T h e B e a t l e s

>>> s =‘The Beatles’

>>> t = s[4]

s -->

0 1 2 3 4 5 6 7 8 9 10

t --> B

0

String Slicing

We say that “t is a slice of s”.

T h e B e a t l e s

>>> s =‘The Beatles’

>>> t = s[4:8]

s -->

t -->

0 1 2 3 4 5 6 7 8 9 10

B e a t

0 1 2 3

String Slicing

Same as s[4:11]. Handy notation when you want an “ending slice.”

T h e B e a t l e s

>>> s =‘The Beatles’

>>> t = s[4:]

s -->

t -->

0 1 2 3 4 5 6 7 8 9 10

B e a t l e s

0 1 2 3 4 5 6

String Slicing

T h e B e a t l e s

T h e

>>> s =‘The Beatles’

>>> t = s[:4]

s -->

0 1 2 3 4 5 6 7 8 9 10

t -->

0 1 2 3

Same as s[0:4]. Handy notation when you want a “beginning slice”.

String Slicing

T h e B e a t l e s

>>> s =‘The Beatles’

>>> t = s[11]

IndexError: string index out of

range

s -->

0 1 2 3 4 5 6 7 8 9 10

The is no s[11]. An illegal to access.

Subscriptingerrors are EXTREMELYcommon.

String Slicing

T h e B e a t l e s

l e s

>>> s =‘The Beatles’

>>> t = s[8:20]

s -->

0 1 2 3 4 5 6 7 8 9 10

t -->

0 1 2

It is “OK” to shoot beyond the end of the source string.

Strings Can Be Combined

T h e B e a t l e s

This is called concatenation.

s -->

Concatenationis the string analog of addition except

>>> s1 = ‘The’

>>> s2 = ‘Beatles’

>>> s = s1+s2

Concatenation

T h e B e a t l e ss -->

We “added” in a blank.

No limit to the number of input strings: s = s2+s2+s2+s2+s2

>>> s1 = ‘The’

>>> s2 = ‘Beatles’

>>> s = s1 + ‘ ‘ + s2

Types

Strings are a type: str

So at this point we introduced 3 types:

int for integers, e.g., -12

float for decimals, e.g., 9.12, -12.0

str for strings, e.g., ‘abc’, ’12.0’

Pythonhas other built-in types. And we will learn to make up our own types.

A Type is a Set of Values and
Operations on Them

int + - * / unary- ** %

float

str

+ - * / unary-

+

**

concatenation

Operations…

Type Conversion

>>> s = ‘123.45’

>>> x = 2*float(s)

>>> print(x(

246.90

A string that encodes a decimal value can be

represented as a float.

Type Conversion

>>> s = ‘-123’

>>> x = 2*int(s)

>>> print (x)

-246

A string that encodes an integer value can

be represented as an int.

Type Conversion

>>> x = -123.45

>>> s = str(x)

>>> print (s(

‘-123.45’

Shows how to get a string encoding of a

float value.

Summary

1.Variables house values that can be

accessed.

2.Assignment statements assign values to

variables.

3.Numerical data can be represented

using the int and float types.

4.Text data can be represented using the
str type.

