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Car-Following Models  
 

 

Introduction 

Car following models are the most important representatives of microscopic traffic flow models. 

They describe traffic dynamics from the perspective of individual driver-vehicle units. In a strict 

sense, car-following models describe the driver’s behavior only in the presence of interactions with 

other vehicles while free traffic flow is described by a separate model. In a more general sense, 

car-following models include all traffic situations such as car-following situations, free traffic, and 

also stationary traffic. In this case, we say that the microscopic models are complete: 

 

A car-following model is complete if it is able to describe all situations including acceleration and 

cruising in free traffic, following other vehicles in stationary and non-stationary situations, and 

approaching slow or standing vehicles, and red traffic lights. 

 

The first car-following models were proposed more than fifty years ago by Reuschel (1950), and 

Pipes (1953). These two models already contained one essential element of modern microscopic 

modeling: The minimum bumper-to-bumper distance to the leading vehicle (also known as the 

“safety distance”) should be proportional to the speed. This can be expressed equivalently by 

requiring that the time gap should not be below a fixed safe time gap. We emphasize that, for 

obvious reasons, the relevant spatial or temporal distances are the net, i.e., rear-bumper-to-front 

bumper, distances. In contrast, the commonly used term time headway generally refers to the time 

interval between the passage times of the front bumpers of two consecutive vehicles, i.e., including 

the occupancy time interval needed for a vehicle to move forward its own length. Unfortunately, 

this distinction (which is essential for vehicular traffic) is often ignored. To avoid confusion and 

in order to be consistent, we will refer to “gaps” if net quantities are meant and define gaps and 

headways as follows (the modifiers in parentheses will be omitted if the meaning is clear from the 

context): 

 

Distance headway = (distance) gap + length of the leading vehicle, (time) headway = time gap 

+ occupancy time interval of the leading vehicle. 

 

 

 

In this lecture, we will describe minimal models for the longitudinal dynamics that do not describe 

realistic driving behavior. Particularly, they yield unrealistic acceleration values. Nevertheless, 

they capture many essential features at a qualitative level and can be implemented and simulated 

easily (sometimes even allowing an analytical solution). 

 

Examples of minimal models include the first-ever car-following models of Reuschel and Pipes in 

which the speed is varied instantaneously as a function of the actual distance to the leading vehicle. 

Another class of minimal models is the General Motors (GM) based car-following models in which 

the acceleration depends on the speed difference and the distance gap according to a power law 

while the driver’s own speed is not considered as an influencing factor. These models are not 
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complete since they cannot describe either free traffic or approaches to standing obstacles. In this 

lecture, we will therefore focus on other models. 

 

Mathematical Description 

Each driver-vehicle combination α is described by the state variables location xα(t) (position of the 

front bumper along the arc length of the road, increasing in driving direction), and speed vα(t) as a 

function of the time t, and by the attribute “vehicle length” lα.  

Depending on the model, additional state variables are required, for example, the acceleration 

𝑣̇𝛼= dv/dt, or binary activation-state variables for brake lights or indicators. We define the vehicle 

index α such that vehicles pass a stationary observer (or detector) in ascending order, i.e., the first 

vehicle has the lowest index (cf. Fig. 1).  

Notice that this implies that the vehicles are numbered in descending order with respect to their 

location x.  

 

From the vehicle locations and lengths, we obtain the (bumper-to-bumper) distance gaps 

 

𝑥𝛼 = 𝑥𝛼−1 − 𝑙𝛼−1 − 𝑥𝛼 = 𝑥𝑙 − 𝑙𝑙 − 𝑥𝛼                                                                                          [1] 

 

 
Fig. 1 defines the state variables of car-following models. 

 

Which (together with the vehicle speeds) constitute the main input of the microscopic models. For 

ease of notation, we sometimes denote the index α − 1 of the leading vehicle with the symbol l 

(see Fig. 1). 

The minimal models (and many of the more realistic models) describe the response of the driver 

as a function of the gap sα to the lead vehicle, the driver’s speed vα, and the speed vl of the leader. 

In continuous-time models, the driver’s response is directly given in terms of an acceleration 

function amic(s, v, vl) leading to a set of coupled ordinary differential equations of the form: 

 

𝑥̇(𝑡) =
𝑑𝑥𝛼(𝑡)

𝑑𝑡
= 𝑣𝛼(𝑡)                                                                                                                    [2] 
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𝑣̇𝛼(𝑡) =
𝑑𝑣𝛼(𝑡)

𝑑𝑡
= 𝑎𝑚𝑖𝑐(𝑠𝛼, 𝑣𝛼 , 𝑣𝑙) = 𝑎́𝑚𝑖𝑐(𝑠𝛼 , 𝑣𝛼 , ∆𝑣𝛼)                                                           [3] 

 

In most acceleration functions, the speed vl of the leader enters only in form of the speed difference 

(approaching rate): 

 

∆𝑣𝛼 = 𝑣𝛼 − 𝑣𝛼−1 = 𝑣𝛼 − 𝑣𝑙                                                                                                            [4] 

            

          

The corresponding models can be formulated more concisely in terms of the alternative 

acceleration function 

 

𝑎́𝑚𝑖𝑐(𝑠, 𝑣, ∆𝑣) = 𝑎𝑚𝑖𝑐(𝑠, 𝑣, 𝑣 − ∆𝑣)                                                                                             [5] 

 

Taking the time derivative of Eq. 1, one can reformulate Eq.2 by:  

 

𝑠̇𝛼(𝑡) =
𝑑𝑠𝛼(𝑡)

𝑑𝑡
= 𝑣𝑙(𝑡) − 𝑣𝛼(𝑡) = −∆𝑣𝛼(𝑡)                                                                                 [6] 

 

The set of Eqs. (3) and (6) can be considered the generic formulation of most time-continuous car-

following models. In this formulation, the coupling between the gap 𝑠𝛼 and the speed 𝑣𝛼 as well 

as the coupling between the speed 𝑣𝛼 and the speed 𝑣𝑙 of the leader becomes explicit. 

 

There are also discrete-time car-following models, where time is not modeled as a continuous 

variable but discretized into finite and generally constant time steps. Instead of differential 

equations, one obtains iterated coupled maps of the general form 

 

𝑣𝛼(𝑡 + ∆𝑡) = 𝑣𝑚𝑖𝑐(𝑠𝛼(𝑡), 𝑣𝛼(𝑡), 𝑣𝑙(𝑡))                                                                                      [7] 

 

𝑥𝛼(𝑡 + ∆𝑡) = 𝑥𝛼(𝑡) +
𝑣𝛼(𝑡)+𝑣𝛼(𝑡+∆𝑡)

2
∆𝑡                                                                                      [8] 

 

The driver’s response is no longer modeled by an acceleration function but by a speed function 

𝑣𝑚𝑖𝑐 (s, v,𝑣𝑙) indicating the speed that will be reached at the end of the next time step. 

 

Compared to continuous models, discrete-time car-following models are generally less realistic 

and less flexible but require less computing power for their numerical integration. Most discrete-

time car-following models have been proposed at times when computing was more expensive. 

Nowadays, hundreds of thousands of vehicles can be simulated with time-continuous models on a 

PC in real-time, so this numerical advantage becomes less relevant. Most commercial traffic 

simulation software uses time-continuous models. 

 

We emphasize that the Eqs. (2) and (6) represent kinematic facts that are valid a priori—in analogy 

to the continuity equations of the macroscopic models. Therefore, a specific time-continuous 

model is uniquely characterized by its acceleration function 𝑎𝑚𝑖𝑐. Similarly, a specific discrete-

time model is completely characterized by its speed function 𝑣𝑚𝑖𝑐. When simulating 

heterogeneous traffic consisting of a variety of driving styles and vehicle classes (such as cars and 
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trucks), each driver-vehicle combination is described by different acceleration functions 𝑎𝑚𝑖𝑐
𝛼  (s, 

v, 𝑣𝑙) or speed functions 𝑣𝑚𝑖𝑐
𝛼  (s, v, 𝑣𝑙), respectively. 

 

Numerical integration. In general, time-continuous models cannot be solved analytically and an 

integration scheme is necessary for an approximate numerical solution of the system of Eqs. (3) 

and (6). For traffic flow applications, only explicit update schemes with a fixed time step are 

practical. Furthermore, the performance of the standard fourth-order Runge-Kutta scheme is 

generally inferior to simpler lower-order update methods. 

 

Furthermore, the proposed scheme (9), (10) has an intuitive meaning in the context of car-

following models: It corresponds to drivers that act only at the beginning of each time step but do 

nothing in between. 

 

Assuming a constant update time step Δt, a simple but efficient explicit update method is given by 

the “ballistic” assumption of constant accelerations during each time step, 

 

𝑣𝛼(𝑡 + ∆𝑡) = 𝑣𝛼(𝑡) + 𝑎𝑚𝑖𝑐(𝑠𝛼(𝑡), 𝑣𝛼(𝑡), 𝑣𝑙(𝑡))∆𝑡                                                                       [9] 

 

𝑥𝛼(𝑡 + ∆𝑡) = 𝑥𝛼(𝑡) +
𝑣𝛼(𝑡)+𝑣𝛼(𝑡+∆𝑡)

2
∆𝑡                                                                                        [10]        

 

 

Consequently, the combination of a continuous-time model with the ballistic update scheme (9), 

(10) is mathematically equivalent to discrete-time models if one set 

 

𝑎𝑚𝑖𝑐(𝑠, 𝑣, 𝑣𝑙) =
𝑣𝑚𝑖𝑐(𝑠,𝑣,𝑣𝑙)−𝑣

∆𝑡
                                                                                                        [11] 

 

However, there is a conceptual difference: For discrete-time models, the time step Δt plays the role 

of a model parameter typically describing the reaction time, the time headway, or the speed 

adaptation time. For time-continuous models, the update time Δt is an auxiliary variable of the 

approximate numerical solution which preferably should be small as the true solution is obtained 

in the limit Δt → 0 (at least if the numerical method is consistent and stable). 

 

 

 

Steady State Equilibrium and the Fundamental Diagram 

Since the driver-vehicle units of microscopic models are equivalent to driven particles of physical 

systems, there is no equilibrium in the strict sense. Instead, there is a stationary state where the 

forces and the entering and exiting energy fluxes are balanced. Strictly physically, this can be 

interpreted in terms of a balance of the forces (the sum of friction, wind drag, and the engine 

driving force equal to zero) or energy fluxes (engine power equals the change in potential and 

kinetic energy plus energy dissipation rate by friction and wind drag). More relevant for traffic 

flow, however, is the concept of balancing the social forces: The desire to go ahead generates a 

positive (accelerating) social force while the interactions with other vehicles generally lead to 

negative social forces in order to avoid critical situations and crashes. 
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In any case, such a balanced state is denoted as steady-state equilibrium. For microscopic models, 

a consistent description of the steady-state equilibrium requires identical driver-vehicle units on a 

homogeneous road. Technically, this implies that the model parameters are the same for all drivers 

and vehicles, i.e., the acceleration or speed functions characterizing the respective model do not 

depend on the vehicle index, 𝑎𝑚𝑖𝑐
𝛼  (s, v, 𝑣𝑙) = 𝑎𝑚𝑖𝑐 (s, v, 𝑣𝑙), and 𝑣𝑚𝑖𝑐

𝛼  (s, v, 𝑣𝑙) = 𝑣𝑚𝑖𝑐 (s, v, 𝑣𝑙), 

respectively. From the modeling point of view, the steady-state equilibrium is characterized by the 

following two conditions: 

 

• Homogeneous traffic: All vehicles drive at the same speed (vα = v) and keep the same gap behind 

their respective leaders (𝑠𝛼 = s).  

• No accelerations:  

𝑣̇𝛼 = 0   or  

𝑣𝛼 (t + Δt) = 𝑣𝛼 (t) for all vehicles α. 

 

For time-continuous models with acceleration functions of the form 𝑎𝑚𝑖𝑐 or 𝑎́𝑚𝑖𝑐  this implies 

 

𝑎𝑚𝑖𝑐(𝑠, 𝑣, 𝑣) = 0      𝑜𝑟      𝑎́𝑚𝑖𝑐(𝑠, 𝑣, 0) = 0                                                               [12] 

 

Respectively, while the condition 

 

𝑣𝑚𝑖𝑐(𝑠, 𝑣, 𝑣) = 𝑣                                                                                                                          [13] 

 

is valid for discrete-time models with the speed function (7). Depending on the model, the 

microscopic steady-state relations (12) or (13) can be solved for 

 

 

 The equilibrium speed 𝑣𝑒 (s) as a function of the gap (microscopic fundamental diagram, 

see below), 

 The equilibrium gap 𝑠𝑒(v) for a given speed. 

 

Microscopic fundamental diagram. Eqs. (12) and (13) allow for a one-dimensional manifold of 

possible steady states that can be parameterized by the distance gap s and described by the 

equilibrium speed function 𝑣𝑒 (s) which is also termed the microscopic fundamental diagram. 

 

Transition to macroscopic relations. In order to obtain a micro–macro relation between the distance 

gap s and the density ρ we directly apply the definition of density as the number of vehicles per 

road length. For a given vehicle length l, we obtain: 

 

𝑠𝛼 = 𝑠 = 
1

𝜌
− 𝑙                                                                                                                                  [14] 

 

Furthermore, the steady-state equilibrium implies that the speed of all vehicles is the same and 

equal to the macroscopic speed 

 

𝑉(𝑥, 𝑡) = 〈𝑣𝛼(𝑡)〉 = 𝑣𝑒(𝑠)                                                                                                          [15] 
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With these relations, we can derive the macroscopic steady-state speed-density diagram and the 

macroscopic fundamental diagram: 

 

𝑉𝑒(𝜌) = 𝑣𝑒 (
1

𝜌
− 𝑙) , 𝑄𝑒(𝜌) = 𝜌𝑣𝑒(

1

𝜌
− 𝑙)                                                                                   [16] 

 

 

Heterogeneous Traffic                       

Microscopic models play out their advantages when describing different drivers and vehicles, i.e., 

heterogeneous traffic. Including different drivers and vehicles is crucial when modeling the effects 

of active traffic management such as variable message signs, speed limits, or ramp metering, or 

when simulating traffic-related effects of new driver-assistance systems. Heterogeneous traffic can 

be microscopically modeled in two ways: 

 

1. All driver-vehicle units are described by the same model using different parameter values. 

The heterogeneity can be applied on the level of vehicle classes (e.g., different parameters 

for cars and trucks), individually (distributed parameters), or both (different parameter 

distributions for cars and trucks). The last combined approach has the advantage that it 

automatically leads to realistic correlations between the parameters. 

 

2. Different driver-vehicle classes can also be described with different models. This allows 

us to directly represent qualitatively different driving characteristics between, e.g., cars and 

trucks or between human driving and semi-automated driving with the help of adaptive 

cruise control (ACC) systems. 

 

We emphasize that simulating heterogeneous traffic is only sensible in the context of multi-lane 

traffic models. Otherwise, a single long queue will eventually form behind the slowest vehicle, 

which is unrealistic. Finally, when parameterizing heterogeneous traffic, it is favorable if the 

model parameters have an intuitive meaning. 

 

Optimal Velocity Model 

The Optimal Velocity Model (OVM) is a time-continuous model whose acceleration function is 

of the form amic(s, v), i.e., the speed difference exogenous variable is missing. The acceleration 

equation is given by: 

 

𝑣̇ =
𝑣𝑜𝑝𝑡(𝑠)−𝑣

𝜏
                 Optimum Velocity Model                                                                   [17] 

 

This equation describes the adaption of the actual speed v = 𝑣𝛼to the optimal velocity 𝑣𝑜𝑝𝑡 (s) on 

a time scale given by the adaptation time τ.  See Fig. 2                                      
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Fig. 2 Optimal velocity functions (left) and (right) for the parameter values of Table 1. 

 

Table 1 Parameter of two variants of the Optimal Velocity Model (OVM). 

 
Full Velocity Difference Model 

By extending the OVM with an additional linear stimulus for the speed difference, one obtains the 

Full Velocity Difference Model (FVDM): 

 

𝑣̇ =
𝑣𝑜𝑝𝑡(𝑠)−𝑣

𝜏
− 𝛾∆𝑣   Full Velocity Difference Model                                                               [18] 

 

However, in contrast to the OVM, the Full Velocity Difference Model is not complete, i.e., it is 

not able to describe all traffic situations. The reason is that the term γ Δv describing the sensitivity 

to speed difference does not depend on the gap. Consequently, a slow vehicle (or a red traffic light 

corresponding to a standing virtual vehicle) leads to a significant decelerating contribution even if 

it is miles away 

 

Newell’s Car-Following Model 

Newell’s car-following model is the arguably simplest representative of time-discrete models of 

the type (7). Its speed function is directly given by the optimal speed corresponding to the 

triangular fundamental diagram with 𝑠0= 0, 

 

𝑣(𝑡 + 𝑇) = 𝑣𝑜𝑝𝑡(𝑠(𝑡)),    𝑣𝑜𝑝𝑡(𝑠) = min (𝑣0,
𝑠

𝑇
)    𝑁𝑒𝑤𝑒𝑙𝑙𝑠 𝑀𝑜𝑑𝑒𝑙                                           [19] 

 

When restricting to the car-following regime, Newell’s model has two parameters:  

 The time gap or reaction time T, and  
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 The (effective) vehicle length leff.  

In this regime, the kinematic wave velocity is constant and given by: 

 

𝑤 = 𝐶𝑐𝑜𝑛𝑔 = −𝑙𝑒𝑓𝑓/𝑇          

 

The set of model parameters can alternatively be expressed by {T,w} or by {leff,w}. The standard 

value for the time gap is T = 1 s while the wave speed should be within the observed range w ∈ 

[−20 km/h, −15 km/h] corresponding to a plausible effective vehicle length leff of about 5 m. The 

minimum condition of the optimal velocity function makes the model complete by defining a free-

flow regime and introducing the desired speed v0 as a third model parameter. It is straightforward 

to generalize Newell’s model by replacing Eq. of optimum speed (triangular diagram) with other 

microscopic fundamental diagrams. 

 

Newell’s model can also be considered as a continuous-in-time model with a time delay assuming 

that the drivers have a constant reaction time Tr = T. In this interpretation, Eq. (19) has the 

mathematical form of a delay-differential equation. 

 

Figure 3 shows that this equivalence only applies to the triangular fundamental diagram and only 

in the bound traffic regime, i.e., for gaps s satisfying ve(s) < v0 or s < s0 + v0T. Otherwise, 

discretization errors are present. 

Generally, the OVM is updated with time steps significantly smaller than the adaptation time. 

However, this does not invalidate the reasoning above, at least, qualitatively. In any case, the 

steady-state equilibria of the two models are equivalent. 

 

 

 
Fig. 3 Trajectory plot of the OVM with the triangular fundamental diagram (leff = 5 m, v0 = 10 

m/s, T = τ = 1 s) with an update time Δt = 1 s 


