
CHAPTER 3 
 

GROUNDWATER MOVEMENT 



Rate of Groundwater movement related to 
transmission property of porous media.   

What is Groundwater velocity of flow?  



Darcy’s law 
Henry Darcy (1856) investigated water flow thru 

horiz.  
bed of sand. 
  
  
  
  
    
  
  
Steady flow     – flow not changing with time 
Laminar flow  – velocity very small.  



Bernaulli Equation 

   P1  +  v1
2  +  z1  =  P2  +   v2

2  +  z2  +  hL 

                    2g            2g 

  

P – pressure 

 – specific weight of water 

v – velocity of flow 

g – acceleration of gravity 

z  –  elevation 

h – head loss 

 



Since  v - is very small  

in linear Groundwater flow,  

 

 hL  =  [(P1/) +  z1] - [(P2/) +  z2] 

  

hL  defined as potential loss within sand 
column. 

This energy lost by frictional resistance 
dissipated as heat energy. 

hL independent of slope of cylinder or 
column. 
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Darcy’s experiment showed: 
   
Q  hL            Q   (hL /L) A        Q  – flux 
      1/L           K  – constant 
      A           A  –  area of cross section 
             L  – column length  
Q = - KA hL    
       L 
  
Q = - KA dh          i = dh/dL =  hL/L  = hyd. gradient 
       dL  
  
 V = Q = - Kdh  Hence,     V = -Ki 
         A         dL 

         
     





Darcy’s law states that flow velocity,  

 V = Product of Constant K, Coefficient of 
 Permeability, and Hydraulic Gradient 

  

Coefficient of Permeability is also known as 
Permeability or Hydraulic Conductivity.  



 (1) Darcy velocity or apparent velocity – 
 V = Q/A ; Assumes water moving thru solids and 

pores. 
  
 (2) Pore velocity or seepage velocity – 
 Since water moves thru pores only, actual vel > 

Darcy vel. 
 
 

 Pore velocity = (Q/A)  = v/ = - k i/  
 
 

 where: 
 Available area of flow = A;  and  = porosity 
   



 (3) Actual velocity – 

   variation due to pore geometry 

    more velocity at constriction.  



Validity of Darcy’s Law: 
 

Darcy’s law valid in laminar flow, not 
turbulent flow. 

 

In laminar flow, flow vel. relatively small; 

 water molecules travel in smooth path II 
to solid boundaries of pores by viscous 
forces of fluid.  

 

 Head loss  i = av  



In turbulent flow, 

 inertial forces due to increased flow vel. 
dominant. 

 

 Water molecules travel in irregular paths 
forming eddies.  

 

Head loss  i = av + bv2
 a & b = constant  



Criteria between laminar and turbulent flow – 

 Reynolds number 
 R = vD  =    inertial forces      = vD 
      m           viscous forces           
 

  v – flow velocity 

   – fluid density 

  D – diameter - (pipe dia. in pipes; grain size 
  or pore dia. in porous med. - grain  
  dia. more convenient and used) 

   m – fluid dynamic viscosity 

    –  kinematic viscosity = 
 

 

m







Fanning factor 

 
f =dP  = d     pg = d    h  g =   d           h  =     di__  

   2   Lv2   2v2     Lg    2v2   L         4(v2/2g)   L      4(v2/2g) 

 

    where: 

   p – pressure diff. over L 

          d – grains size 

 





Plot f vs. R or NR for porous media 

 

Laminar range – 

 R - 1 to 10   (<1) 

Darcy’s Law valid 

 

Turbulent flow – occurs near pumped well 
casing; porous formations as basalt and 
limestone. 

 



Permeability 
Hydraulic Conductivity (Permeability), K: 
 K = - Q           =   - VA       = -  V 
        Ai                   iA               i 
Dimensions – 
 K = - V / (dh/dL)  ,          m/d or gpd/ft2  or ft/d 
 K =1  if         Vol = 1  in time = 1 
     Area  = 1 
           i   = 1 
A porous medium has unit K if it transmits a unit 

vol. of water in unit time thru unit area of cross 
section normal to flows under unit i at prevailing 
temperature.  



Standard (Laboratory) Perm., Ks – 

 flow of water at 600 F in gpd thru a porous 
media having an area of 1 ft2 
perpendicular to flow under a hyd grad. of 
1 ft/ft 

  

 Ks – 10 - 5000 gpd/ft2 

 Ks – 2000 gpd/ft2        good aquifer 

 



Field perm., Kf – 

 Flow of water in gpd thru an aquifer of 1 ft 
thickness by 1 mile width perpendicular to 
flow under a grad. of 1 ft/mile at field temp. 

  

 Ks = Kf 

 Ks = mf                 [   K  1/ m ] 

 Kf     m60 

 



Transmissivity; T : 

 T = Kb  gpd/ft or m2/d      b = thickness of 
aquifer  

     

    Q = K i A = K i ( b x 1 ) 

                     = T x i x 1 



Intrinsic Perm, k:  

  K =  k             K – hydraulic constant 

    m                          m – dynamic viscosity 

      – sp. weight of water 

K = f (P.M., Fluid) 

  

k is property of porous medium 

 k = cd2 ,  cm2  or ft2       d – grain size 

       c – constant 

c = f( porosity, packing, grain size distribution, 
shape) 

 



Range of Groundwater velocity: 

  Low velocity – clay average 

   K  = 10 gpd/ft2 

   i   = 10 ft/mile 

   v  = 10(10/5280)  =  2.5 X 10-3 ft/d 
 High velocity – Alluvial average 

   K = 5000 gpd/ft2 

   i  = 100 ft/mile 

   v = 12.7 ft/d 

  

  Natural velocity – 5 ft/d  to  5 ft/yr  



 



 



 





 



 

Measurement of Permeability: 

 1.   Formulas 

 2.   Lab. Measurement (permeameters) 

 3.   Tracers 

 4. Pumping tests of wells – CH4 



Measurement of Permeability: 
 

1. Formulas – derived from analytic or 
experimental work 

 

 k = f(, packing, grain size) 

 

 Basically, problem reduces to relating factor 
C to media properties  



Measurement of Permeability: 
 

Fair and Hatch formula – 
k =______________1_____________ 
 n {[(1-)/3]}2   [(/100)P/dm)]2 
  

  k = intrinsic perm.      : K = k  / m    

  n = packing factor  (found experimentally;) 
   = shape factor (spherical sand 6, angular grains 7.7) 
   = porosity 
  P = % of sand held between adjacent sieves 
  dm = geometric mean of the adjacent sieves 
  dm = (d1.d2....dm)1/m 

 



Measurement of Permeability: 
 
   2.   Lab. Measurement (permeameters) 

 Method of determining K 

     (i) constant head 

    (ii) falling head 

   (iii) non-discharging 

   

  Q = KA dh/dL  K = Q/A 

  

 Criticism: 

    (i) representative sample 

  (ii) undisturbed sample  





Measurement of Permeability: 
 
   3. Tracers:  Field method of determining K 
 

 Introduce tracer in U/S well. 
       

 Observe the time required for it to appear 
in D/S well. 

  

 Estimate Groundwater velocity  



Measurement of Permeability: 
 
   3. Tracers cont. 
 Use this vel. and hyd. grad. to determine K. 
 Since flow occurs only in pores, 
 Q = (A) Vp 
 Vp = (K/)(h/L) 
  
 K= VpL  = L2   
                 h           t h  
    
 where:  Vp = L/t ; 
    t = time of tracer appearance in well B 
 



Measurement of Permeability: 
 
   3. Tracers cont. 

 Criticism: 

   (i)  Direction of flow 

  (ii)  Front moves at unequal vel. due to       
variation of K 

 (iii)  As tracers miscible with water, there 
      is diffusion & dispersion. 

 

 





4. Pumping tests of wells  

 

Anisotropy – 

 Kx >> Kz , anisotropic aquifer 

 If Kx = Kz at a point, isotropic aquifer  



4. Pumping tests of wells  

Hetrogeneous (Nonhomogeneous) Aquifer - 
Layered Aquifer 

  

If Kx or Kz same at various points in aquifer, 
homogeneous aquifer. 

If it varies, nonhomogenous aquifer. 

 

Average K for horizontal and vertical flows. 
(Prob. Given: see textbook)  



 



 



 



Dupuit – Forchheimer Assumption: 

Darcy’s law – 

 V = K (dh/dL)    K tan 

          Ksin    K tan 

Applicable to 1-D horizontal or vertical flow. 

In vertical flow, horizontal flow component is 
neglected and in horizontal flow, vertical 
flow is neglected. 

This is called D–F assumption.  



Horizontal flow– 

 Flux to effluent stream 

  

 Q = V*A 

     = K(dh/dL) (b x 1) 

     = flux per unit width, (m3/d/m  or  gpd/ft) 

 



Vertical flow – 

 Flux from shallow influent stream to 
aquifer (depth is small and width is large) 

 Assume vertical leakage 

 Q = K(dh/dL) (W x 1) 

     =  flux per unit length of stream 

 



Flow Equations: 

Darcy’s law 

 

 V = -K  

 

  

         

  

  

 s - distance along flow direction  
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Velocity components in x,y,z directions – 
  

Vx =              ;  Vy =                ; Vz =  
 

Kx,Ky,Kz – Perm. in x, y, and z directions 

Assume homogeneous and isotropic aquifer, 
Kx = Ky = Kz =K 

 

Vx =        ; Vy =     ;  Vz =  
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In hydrodynamics, vel. potential, , defined 
as a scalar function of space and time, 
such that 

 

Vx =      ; Vy =    ; Vz =  

 

Thus  = Kh 
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Steady Flow – 

Equation of continuity 
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 – mass density of fluid 

 

For steady flow, flow condition unchanged with time.  

Water incompressible, so  = constant. 

Thus  
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Substituting Vx = 
x


  etc. into 
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gives the Laplace Equation. 

 

Laplace Equation 
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• Since 

 

 

 

• This is general partial differential equation 
for steady flow of water in homo. & 
isotropic medium.  
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• Unsteady Flow: 

– To derive unsteady flow equation, consider 
storage coefficient and aquifer compressibility 
in confined aquifer, and yield in unconfined 
aquifer, S related to aquifer compressibility,  



 

 

 

 

• v – volume 

• p – pressure 

• E – elastic modulus 
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• It is assumed the compressive force act in 
vertical direction and is negligible in 
horizontal direction.  When p.s. lowered by 
1 ft., water released = S 

 

• Thus   v S h S S  .1



• Volume of aquifer column 

– v = b.1 = b 

• Change in pressure 

 

 

•        is negative because of decline in water 
level 
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For elastic material : 

V= 


m
   or  V = m     V – vol (ft3) 

     m – mass (slug) 

 or 





V

V
    – density (slug/ft3) 



It is assumed that water is compressible, and that  

the grains porous media are rigid; however, they  

may be packed more closely by compressive forces. 
  

d = 
V

dv
  
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Substitute in eqn. of continuity – 
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This is approx. PDE for unsteady flow of water in a 

compressible confined aquifer of thickness b. 



 

PDE for unconfined aquifer is nonlinear. The 
confined aquifer P.D. applied to an 
unconfined aquifer where variations in sat. 
thickness is small. 



Boundary conditions– 

 1.   Infinite aquifer 

 2.   Impermeable boundary – fault 

 3.   Permeable boundary – wells, water 
 table, surface water body (lakes, etc.) 

 



Method of Solution– (steady & unsteady 
Equations): 

 1.   Analytic – transformations 
(Hodographs)  

 2.   Flow nets - steady state flow 

 3.   Hydraulic models 

 4.   Analog models – electric network 

 5.   Digital models 

 6.  Hybrid models  



2- Flow Nets 

Flow fields in groundwater 

Steady state GW flow 

Hyd. Grad. – 

)(dmx
ds

dh
Kdq

ds
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i





 

For square flow nets, 

ds dm 

Flow in each flow line 

 dq =Kdh 





If n squares along a flow line & h is total 
head loss 

       n= no. equipotential tubes 

 dh = h/n   

 dh = head loss in 1 square 

 dq =Kh/m 
 

If total flows Q divided into m squares (m = 
no. of flow tubes) 

 

Q =mdq = Kmh            
              n 



Contour map of W.T or P.S. and flow lines useful for 
locating new wells. Flow occurs along stream 
tube, velocity of flow zero across tubes. 

  

  

  

  

  

  

  

 q =A1V1 =A2V2   

 A = flow area perpendicular to flow  



Darcy’s law 

 A1K1i1 = A2K2i2  i – hyd. grad. 
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If aquifer depth uniform and flow lines equispaced 

  

1

2

2

1

i

i

K

K
   K1  1/i1 

Portions of aquifer having wide contour spacing (flat hyd. grad) will 

have higher than those with narrow spacing (steep hyd. grad) 



 



 



 





Flow Across a boundary of different perm.-  

 From Continuity normal compts. of flow 
approaching & leaving the boundary must 
be equal 



Vn1 =Vn2 
 

V1 cos1 =V2 cos2 
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1, 2 – angle w/ normal 



b – distance along boundary for stream tube  

must be equal in the two regions 
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Since dh1 = dh2 between two equipotential lines 
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Refraction of flow lines occurs from one perm.  

to another per region. 







Perm. in Unsat. Flow – 
Darcy’s law applicable in unsat. Flow, with a different perm., 

which is a function of water content. 
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Ss – degree of saturation 

Ss = 100       – water content by vol. 

                                            – porosity 
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Ss – degree of saturation 

S0 – threshold sat. (20%) 

      – that part of voids which is filled with non-moving water. 

 

Ku =Ks(.6) 



Using Darcy’s Law – 

  

 Q = A(k/ m) (dh/dL) 

  

 k = m Q/A          =     mQ/A  

        (dh/dL)      (dp/dL) 

  

 Value of k in cm2 or ft2 is very small; so a 
large unit darcy used in Petroleum eng. 
Groundwater hydrology. 

 



1 darcy = 1 centipoise X (1cm3/s/1cm2) 

    (1 atm./1 cm) 

  

1 centipoise = 0.01 poise = 0.01 dyne-sec/cm2 

 

1 atm = 1.10132 X 106 dynes/cm2 

 

 thus, 

  1 darcy = 0.987 X 10-8 cm2 

        = 1.062 X 10-11 ft2  


