CHAPTER 3

GROUNDWATER MOVEMENT



Rate of Groundwater movement related to
transmission property of porous media.

What is Groundwater velocity of flow?



Darcy’s law

Henry Darcy (1856) investigated water flow thru
horiz.

bed of sand.
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Bernaulli Equation
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P — pressure

v — specific weight of water
v — velocity of flow

g — acceleration of gravity

z — elevation

h — head loss



Since v -is very small
in linear Groundwater flow,

hy = [(Py/y) + z,]- [(P,/Y) + z,]

h, defined as potential loss within sand
column.

This energy lost by frictional resistance
dissipated as heat energy.

h, independent of slope of cylinder or
column.



Darcy’s experiment showed:

Q~h, Q «<(h /L) A Q —flux

~1/L K — constant
~ A A — area of cross section
L — column length
Q =- KA h!L

Q=-KAdh i=dh/dL= h /L =hyd. gradient
dt

V=Q-=-Kdh Hence, V =-Ki
A dL






Darcy’s law states that flow velocity,

V = Product of Constant K, Coefficient of
Permeability, and Hydraulic Gradient

Coefficient of Permeability is also known as
Permeability or Hydraulic Conductivity.



(1) Darcy velocity or apparent velocity —

V = Q/A ; Assumes water moving thru solids and
pores.

(2) Pore velocity or seepage velocity —

Since water moves thru pores only, actual vel >
Darcy vel.

Pore velocity = (Q/aA) =v/a=-ki/ a

where:
Available area of flow = aA; and o = porosity



(3) Actual velocity -
variation due to pore geometry
more velocity at constriction.



Validity of Darcy’s Law:

Darcy’s law valid in laminar flow, not
turbulent flow.

In laminar flow, flow vel. relatively small;

water molecules travel in smooth path Il
to solid boundaries of pores by viscous
forces of fluid.

Head loss i = av



In turbulent flow,

inertial forces due to increased flow vel.
dominant.

Water molecules travel in irregular paths
forming eddies.

Head loss i = av + bvZa & b = constant



Criteria between laminar and turbulent flow —

Reynolds number
R=pvD = _.inertial forces =vD
L viscous forces \Y

v — flow velocity
p — fluid density

D — diameter - (pipe dia. in pipes; grain size
or pore dia. in porous med. - grain
dia. more convenient and used)

i — fluid dynamic viscosity
v — kinematic viscosity =
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Fig. 3.2. Relation of Fanning friction factor to Reynoids number for flow through granular porous media (after
Rose 69).



Fanning factor

f=dAP =d Apg=d Ah g= d Ah di
2 vz 2vZ g 2v? L 4(v3/2g) L 4(v?/2g)

where:
Ap — pressure diff. over L
d — grains size



Plot f vs. R or N for porous media

Laminar range —
R-1to10 (<1)
Darcy’s Law valid

Turbulent flow — occurs near pumped well
casing; porous formations as basalt and
limestone.




Permeability
Hydraulic Conductivity (Permeability), K:
K=-Q = -VA =-V

Ai A i
Dimensions -
K=-V/(dh/dL) , m/d or gpd/ft? or ft/d
K=1 if Vol=1 intime=1
Area =1
i =1
A porous medium has unit K if it transmits a unit
vol. of water in unit time thru unit area of cross

section normal to flows under unit i at prevailing
temperature.



Standard (Laboratory) Perm., K_ -

flow of water at 60° F in gpd thru a porous
media having an area of 1 ft2

perpendicular to flow under a hyd grad. of
1 ft/ft

K. —10 - 5000 gpd/ft?
K. —2000 gpd/ft> = good aquifer



Field perm., K -

Flow of water in gpd thru an aquifer of 1 ft
thickness by 1 mile width perpendicular to
flow under a grad. of 1 ft/mile at field temp.

Ks—=}’—lf [ KO‘1/M]



Transmissivity; T :

T=Kb gpd/ftorm?/d b = thickness of
aquifer

Q=KiA=Ki(bx1)
=Txix1



Intrinsic Perm, k:
K= ky K — hydraulic constant
L L — dynamic viscosity
Y — sp. weight of water
K =f (P.M., Fluid)

k is property of porous medium
k =cd?, cm? or ft2 d — grain size
¢ — constant

c = f( porosity, packing, grain size distribution,
shape)



Range of Groundwater velocity:
Low velocity — clay average
K =10 gpd/ft2
i =10 ft/mile

v =10(10/5280) = 2.5 X 103 ft/d
High velocity — Alluvial average

K = 5000 gpd/ft2
i =100 ft/mile
v=12.7 ft/d

Natural velocity — 5 ft/d to 5 ft/yr



EXAMPLE .11

SOLUTION

A field sample of an unconfined aquifer is packed in a test cylinder (see Figure 3.1.1). The length and the
diameter of the cylinder are 50 cm and 6 cm, respectively. The field sample 1s tested for a period of 3 min
under a constant head difference of 16.3 cm. As a result, 45.2 cm” of water is collected at the outlet.
Determine the hydraulic conductivity of the aquifer sample.

The cross-sectional area of the sample is

D*  7(0.06 m)’

A= =0.00283 m’

4
The hydraulic gradient, dh/dl, is given by

dh _ (-16.3¢cm) 032

dl 50 cm
and the average flow rate is

3

0=22" 1507 em®/min = 0.0217 m*/day

3 min
Apply Darcy’s law, Equation 3.1.4, to obtain the hydraulic conductivity as

3
Q:—Kﬁﬂ_._}!(:_ 0 - []ﬂ?l?l;‘i /day
dl A(dhidl) ~ (0,00283 m?)(-0.326)

=23.5 m/day



EMBLE 3.12 A confined aquifer with a horizontal bed has a varying thickness as shown in Figure 3.1.2. The aquifer

' — is inhomogeneous with K = 12 + 0.006x, where x = 0 at section (1), and the piezometric heads at sections
(1) and (2) are 14.2 m and 18.8 m, respectively measured above the upper confining layer. Assuming the
flow in the aquifer is essentially horizontal, determine the flow rate per unit width.

SOLUTION Darcy's law for a constant thickness aquifer is given by Equation 3.1.4,
dh
—-KAZ
0 dl
(2)
(1)
75m
30m K=12 + 0.006x
{: 3,600 m =!

Figure 3.1.2. Aquifer for Example 3.1.2



Since the aquifer thickness is variable in this problem, we must also write the cross-sectional area and

b, —b
the hydraulic gradient as a function of the distance x. Assuming a unit width, A =5, + M , where
b, =30m, b,=75m,and L = 3,600 m, then we have L
75—
A= 3U+w =30+0.0125x

3,600

Substituting the expressions for A and K into Darcy’s equation yields the expression for 0 in follow-
ing form:

Q=4{12+O.0[]6x][30+[].0125x]%

Rearranging this equation and integrating from section (1) to section (2) yields

3600 1 18.8 1
I m:j-—ﬁ
J(12+0006x)(30+001252) /"0

This equation is integrated using partial fraction decomposition to obtain

3600 18.8
02 o416 | WL
o | (1240.006x) (30+0.0125x) | 14,
x=3,600 1 in=188
[33.3331n (12+0.006x) - 33.281In (30+0.0125x)] _ ™" = —Eh]hzm

26,54~ (~30,36) = —é(m.squ}

0 =-1.20 (m*/day/m)

The minus sign implies that the flow is from section (2) to (1). |



[Wﬁ ﬁi The fol lowing additional infermation is given for the aquifer sample in Example 3.1.1. The sample has
D - a median grain size of 0.037 cm and a porosity of 0.30. The test is conducted using pure water at 20°C,

Determine the Darcy velocity, averags intesstitial velocity, and assess the validity of Darcy’s law.

SOLUTTON Darey velocity is computed using Equation 3.1.5:

p= —x:—? = ={23.54 mday){~0.326) = 7.67 m/day
The average linear velocity is computed vsing Equation 3.1.6;
= Q¥ 16T midsy
A o 030
In order to assess the validity of Darcy’s Law we must determing the greatest velocity for which
Doarcy’s law is valid using Equation 3,1.7, Mg =# Jenowing Darcy's law is valid for V<1, For water at

= 25,6 miday

m 1005107 kafms
Y T 7 T
PO (9982 kg/m’ {0.00037 m)

=0.00272 m/s = 235 m/day

Then Darcy's law will be valid for Darcy velocities equal to or less than 235 m/day for this sample. Thos, alid f"-_"r VETY Slow Waler Flow
the answer we have found in Example 3.1.1 is valid since v = 767 miday < 235 m/day. [ ] the mimule [rHes F'”-'-'d'.*:'-'- M=



EXAMPLE 3.2.1

SOLUTION

A leaky confined aquifer 15 overlan by an aquitard that 15 also overlam by an unconfined aguifer. The
aslimated recharge rate from the unconfined aguifer into the confined aquifer is 0.083 mfyear. Piezo-
metnc hitad measurerments in the confined aquifer show that the average piezometric head in the confined
aguifer 15 6.8 m below the water table of the unconfined aguifer. I the average thickness of the aguitard
15 4.30 m, find the vertical hydraulic conductivity, &, of the aguitard. What type of material could this

possibly be?

Criven v = 0085 miyear = 2329 % 107 myday, Equation 3.2.6 15 used to compuie the vertical hydraulic
condoctivity of the aguitard;

v 2320x 0107 miday
difdi (6.8 mM.30 m)

=L 4TIx 107 m/day

From Table 3.2.1, the aquitard i composed of clay. L



Measurement of Permeability:
1. Formulas
2. Lab. Measurement (permeameters)
3. Tracers
4. Pumping tests of wells — CH4



Measurement of Permeability:

1. Formulas — derived from analytic or
experimental work

k = f(o,, packing, grain size)

Basically, problem reduces to relating factor
C to media properties



Measurement of Permeability:

Fair and Hatch formula -
k = 1
n {[(1-a)/a’]}* [(6/100)ZP/d )]

k =intrinsicperm. :K=ky/pn

n = packing factor (found experimentally;)

0 = shape factor (spherical sand 6, angular grains 7.7)
oL = porosity

P = % of sand held between adjacent sieves

d = geometric mean of the adjacent sieves
d_=(d,.d,..d_ )¥m



Measurement of Permeability:

2. Lab. Measurement (permeameters)

Method of determining K

(i) constant head
(ii) falling head
(iii) non-discharging

Q = KA dh/dL K=Q/A
Criticism:

(i) representative sample
(ii) undisturbed sample



GROUNDWATER MOVEMENT

Continuous
Constant supply

water level ~J

3

v
Overtiow

_____ Horizontal area
2 of sampie, A

Volume V in time ¢ A
" (a) )

———————

Fig. 3.4 -*‘Permeameters for measuring hydraulic conductivity of
geologic sampies. (a) Constant head. (b) Falling head.




Measurement of Permeability:

3. Tracers: Field method of determining K
Introduce tracer in U/S well.

Observe the time required for it to appear
in D/S well.

Estimate Groundwater velocity



Measurement of Permeability:

3. Tracers cont.
Use this vel. and hyd. grad. to determine K.

Since flow occurs only in pores,
Q=(Aa)V,
V. = (K/a)(h/L)

K= aVEL = L2
h th

where: Vp =L/t;
t = time of tracer appearance in well B



Measurement of Permeability:

3. Tracers cont.
Criticism:
(i) Direction of flow

(ii) Front moves at unequal vel. due to
variation of K

(iii) As tracers miscible with water, there
is diffusion & dispersion.



et We\)
Y

Teacer Sownp\e




4. Pumping tests of wells

Anisotropy —
K. >>K_, anisotropic aquifer
If K, = K at a point, isotropic aquifer



4. Pumping tests of wells

Hetrogeneous (Nonhomogeneous) Aquifer -
Layered Aquifer

If K, or K, same at various points in aquifer,
homogeneous aquifer.

If it varies, nonhomogenous aquifer.

Average K for horizontal and vertical flows.
(Prob. Given: see textbook)



EXAMPLE 3.0.1 A field sample of medium sand weth a median graon size of 0.84 mm waill be tested o determine the
hydraalic conductivity using a constant-head permeameter. The sample has o length of 30 ¢ and a diam-
eler of 5 cm. For pure water al 20°C, estmate the range of prezometne head differences o be used 1n the

Lesl

SOLUTION The maximum allowable Darcy velocity (assuming &g = 1) for & = (L84 mm 15

=3
J B LU0 TRRME b 6619 s = 1006 miday

pid (9982 kefm” [(0.00084 m}

Thus, the Darcy velocity in the rest must be equal to or less than 103.6 miday so that Darcy’s law will
be walid, so that

(103.6 m/day }{0.30 m}

idh

v =K — £ 1036 miday —~» |dh <
i Y- K

For the representative value of hydraulic conductivity for medium sand given in Table 3.2.1,

(103.6 miday)0.30 m}
12 mdday

=26m=260cm

K = 12m/day, then |dh| <

It should be noted that the & valve for clean sand ranges approximately from 0.1 m'day to 4,320
mfday. See Figure 3.2.1. Therefore, the early senes of tests must be conducted with relanvely low piezo-
metric head differences if possible. After analyzing the results of early test data, a better estimate of the
maxirwm allowable pezometnc head difference can be made vsing the above inequality. [ |



EXAMPLE 3.3.2

SOLUTION

If the field sample in Exarnple 331 15 tested with a head difference of 5.0 cim and 200 ml of water is col-
lected at the outlet in 13 min, detertune the hydraulic conductivity of the sample. What should the max-
imum allowable piezometric head difference be for a series of tests?

Equation 3.3.3 is used to compute the hydraulic conductivity in a constant-head permeameter test:

VI [EIIII e’ |30 cm)
K== ' = .0679 cms = 58.7 miday
Ath nl.j EFI'I} ¥ . g °
———— | 15min = 60— [[5.0 cm]
4 ' min ;

Based upon this estimate and refesring to Example 3.3.1, the maximum allowable piezometric head
difference for tests should be approximately

(1036 miday )(0.20 m)
il < =053 m = 53
) 58,7 midiy M= -




FXAMPLE 333

SOLUTION

A 20-cm long field sample of silty, fine sand with a diameter of 10 em is tested using a falling-head
permeameter, The falling-head tube has & dizmeter of 3.0 cm and the initizl head is 8.0 em. Over a period
of § hr, the head in the tube falls 1o 1.0 cm. Estimate the hydraulic conductivity of the sample.

Equation 3.3.6 is nsed to compute the hydraulic condectivity in a falling-head pecmeameter test:

L B (1Sem)(2em) | 80em

K=-trint= -In = 13107 emfs = 0.112 miday

?T iy (5.0 |:rn}1 (Bx3600sec| 1.0cm .
l Add 1 Sample

tracer far tracer

/
Ground surface +— Hola B
4= Hole A

% 1
N | h
N Vi o
I Water table -
— — Figure 3.3.2. Cross section of an
B - unconfined aquifer illastrating a
N - tracer teet for determining hydraulic
a L | conductivity.




Dupuit — Forchheimer Assumption:

Darcy’s law —
V =K (dh/dL) =~ K tan0
KsinO ~ K tan@
Applicable to 1-D horizontal or vertical flow.

In vertical flow, horizontal flow component is
neglected and in horizontal flow, vertical
flow is neglected.

This is called D—F assumption.



Horizontal flow-
Flux to effluent stream

Q=V*A
= K(dh/dL) (b x 1)
= flux per unit width, (m3/d/m or gpd/ft)



Vertical flow —

Flux from shallow influent stream to
aquifer (depth is small and width is large)

Assume vertical leakage
Q = K(dh/dL) (W x 1)
= flux per unit length of stream



Flow Equations:
Darcy’s law

V=-K

s - distance along flow direction



Velocity components in x,y,z directions —

V = ’V= ;\jzz

X y
KX,Ky,Kz — Perm. in X, y, and z directions

Assume homogeneous and isotropic aquifer,
K, = K, =K, =K

V = ;V: ;V:

X y z



In hydrodynamics, vel. potential, ¢, defined
as a scalar function of space and time,
such that

Vx= ;Vy: ’V=

Thus ¢ = Kh









* Since

* This is general partial differential equation
for steady flow of water in homo. &
isotropic medium.



Unsteady Flow:

— To derive unsteady flow equation, consider
storage coefficient and aquifer compressibility
in confined aquifer, and yield in unconfined
aquifer, S related to aquifer compressibility,



e v—volume

* p— pressure

e E—elastic modulus



* |tis assumed the compressive force act in
vertical direction and is negligible in
horizontal direction. When p.s. lowered by
1 ft., water released =S

e Thus



* Volume of aquifer column
—v=b.l=b
* Change in pressure

. is negative because of decline in water
level












PDE for unconfined aquifer is nonlinear. The
confined aquifer P.D. applied to an
unconfined aquifer where variations in sat.
thickness is small.



Boundary conditions—
1. Infinite aquifer
2. Impermeable boundary — fault

3. Permeable boundary — wells, water
table, surface water body (lakes, etc.)



Method of Solution— (steady & unsteady
Equations):
1. Analytic — transformations
(Hodographs)
2. Flow nets - steady state flow
Hydraulic models
Analog models — electric network

Digital models

oUW

Hybrid models









If n squares along a flow line & h is total
head loss

n= no. equipotential tubes

dh=h/n
dh = head loss in 1 square
dq =Kh/m

If total flows Q divided into m squares (m =
no. of flow tubes)

Q =mdq = Kmh
n



Contour map of W.T or P.S. and flow lines useful for
locating new wells. Flow occurs along stream
tube, velocity of flow zero across tubes.

q=AV,=AV,
A = flow area perpendicular to flow






EXAMPLE 3.5.1

SOLUTION

Determine kg and the vertical velocity for the situation shown in Figure 3.5.2.

Assume steady-state conditions. Writing Darcy's law from point A to B with the dimensions indicated in
Figure 3.5.2, we have

kTt
dl 27 (3.5.3)
and from point B to C,
= kY _gpheto—30
dl 5
Solving these yields, hy = 26.8 m” and v = 0.07 m/day. |
Ground surface

VSR e [ [T S e TRt

A Water table

L __m___I_é__I____‘:___

v I Piazometric surface

Unceonfined
Y ¥ ¥ aquifer
K= 10 m/day

Aquitard
K= 0.2'm/day
Figure 3.5.2. Diagram illustrating applica-
Leaky tion of Darcy’s law for vertically downward
aquifer flow.




Three observation wells are installed to determine the direction of groundwater movement and the
hydraulic gradient in a regional aquifer. The distance between the wells and the total head at each well

are shown in Figure 3.6.7a.

Well 1
(32.55 m)

Waell 2
(32.41 m)

Figure 3.6.7a.
0 25 &0 100 :
] 1 | Well 3 Configuration of three
Scale, meters (32.66 m)  observation wells in
(a) Example 3.6.1




Direction of
ground water
movement
(32.55 m)
0 25 &0 100
(I J O well 3
32.66 m
Scale, meters ( ) Figure 3.6,76. Ilustration of graphical proce-
(b) dure in Example 3.6.1.
SOLUTION Step 1: Identify the well with the intermediate water level—Well | in this case.

Step 2: Along the straight line between the wells with the highest head and the lowest head, iden-
tify the location of the same head of the well from Step 1. Note that this is accomplished by locating
the elevation of 32.55 m between Well 2 and Well 3 in the graphical solution.

Step 3: Draw a straight line between the intermediate well from Step 1 and the point identified in
Step 2. This is a segment of the equipotential line along which the total head is the same as that in
the intermediate well (1.e., equipotential line of 32.55 m head in this case).

Step 4: Draw a line perpendicular to the equipotential line passing through the well with the lowest
head. The hydraulic gradient is the slope of that perpendicular line. Also, the direction of the line indi-
cates the direction of groundwater movernent. The graphical procedure above is illustrated in Figure
3.6.7b. The hydraulic gradient is then computed as

= 32.55m-3241m =0.0012
11593 m =]



The average daily discharge from the Patuxent Formation (see Figure 3.6.8) in the Sparrows Point dis-

“ trict of Baltimore, Maryland, in 1945 was estimated as 1 x 10° ft*/day. A flow net of the region is con-
structed using the available contour lines as shown in Figure 3.6.8. (This example is adapted from
Lohman. %) Compute the transmissivity of the regional aquifer.

SOLUTION As shown in the flow e, there are 15 flow channels, hence m = 15. There are four equipotential drops
from the 60-ft contour line to the 20-ft contour line, so h = 40 ft and n = 4. Then the overal! transmissiv-

ity of the district can be computed using Equation 3.6.13:

"o _ (4)1x10° f’rday)
“wh (15§40 &) =6700 1 tay .

Figure 3.6.8. Map of
Baltimore industrial area.
Maryland, showing poten-
tiometric surface in 1945
and generalized flow lines
in the Patuxent Formation,

Wall for which altitude From Bennett and Meye?
' r i (as presented in
of head was obtained o




Flow Across a boundary of different perm.-

From Continuity normal compts. of flow
approaching & leaving the boundary must
be equal

Hydraulic
conductivity K

Boundary

K 8, / Hydraulic
conductivity K;
aL, \/

Vo ¥
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SOLUTION

Unconfined fLai
=/

Aquitard

Consider a case where a leaky confined aguifer with 4.5 m/day honizontal hydraulic conductivity is over-
Jain by an aquitard with 0.052 m/day vertical hydraulic conductivity. If the flow in the aquitard is in the
downward direction and makes an angle of 5° with the venical (see Figure 1.6.12), determine 9,.

Given K, = 0.052 m/day, K, = 4.5 m/day, and 8, = 5°, Equation 3.6.25 is used to compute 8,:

Ky _tan®, 0052 miday _ ﬁﬂ{-‘*“]

—}HI“EE.F
K, tan®, = 4S5miday  tanf,

The flow lines become nearly horizontal as they enter into the confined aquifer. This is a typical case for
regional flow systems, as the hydraulic conductivity of a confined aquifer is generally a few orders of
magnitude larger than that of the confining layers. |

aquifer

aquifer

364




Perm. in Unsat. Flow —



Using Darcy’s Law —
Q = A(ky/ p) (dh/dL)

k=upQ/A = uQ/A
y(dh/dL) (dp/dL)

Value of k in cm2 or ft2 is very small; so a
large unit darcy used in Petroleum eng.
Groundwater hydrology.



1 darcy = 1 centipoise X (1cm3/s/1cm?)
(1 atm./1 cm)

1 centipoise = 0.01 poise = 0.01 dyne-sec/cm?
1 atm =1.10132 X 10° dynes/cm?

thus,
1 darcy = 0.987 X 10 cm?
= 1.062 X 1021 ft2



