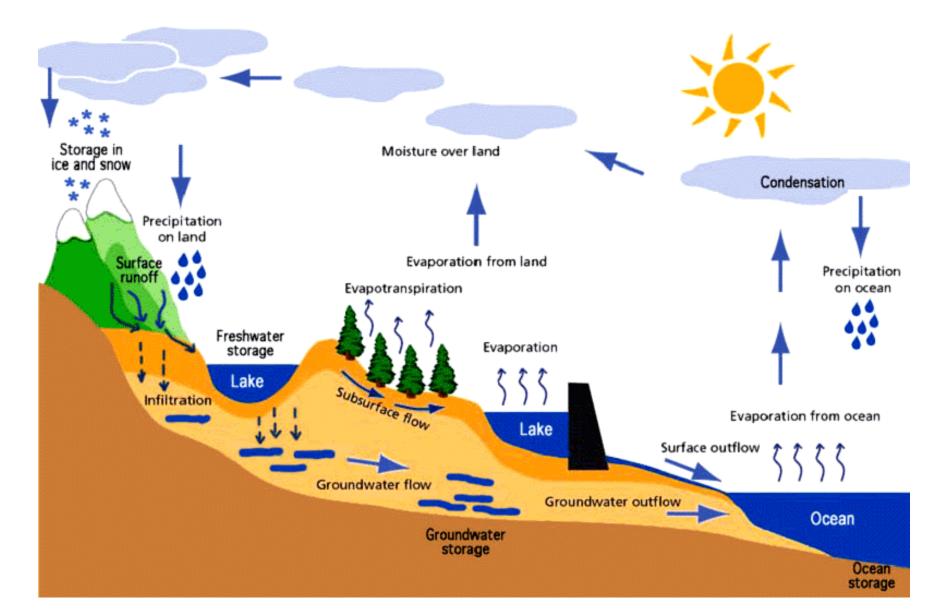
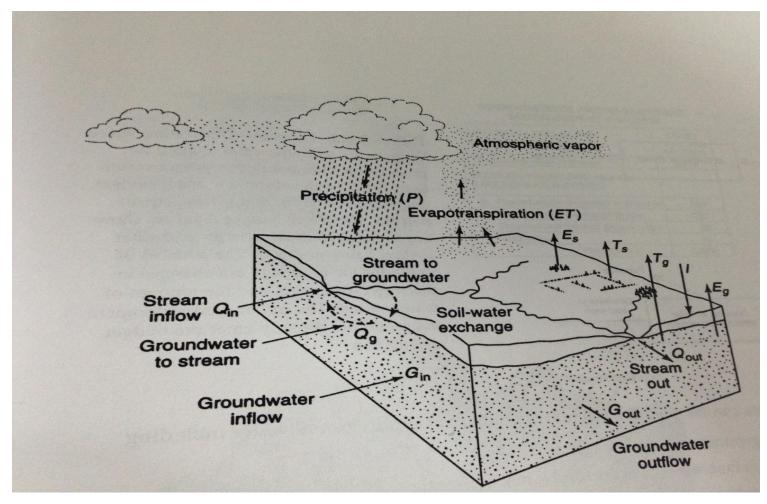
CHAPTER 1


- Role of Groundwater
 - Water Supply
 - Drainage; Seepage, excavations, and foundations;
 - Subsidence of land; Special problems
 - sea water intrusion, artificial recharge, waste disposal, pollution

Role of Groundwater

Water management – (concerned with)
 underground storage, conservation, minimum
 cost, quantity available, quality available, time
 and space variations.

- Groundwater and other applications
 - Geology: oil, gas, salt deposits, fresh water mining
 - Petroleum Engineering
 - Agriculture: irrigation, drainage, soil moisture
 - Soil Science (Agronomy): soil-plant-water relations


- Groundwater and other applications
 - Public Health
 - Law: groundwater rights, RCRA, CERCLA, SARA,
 LUST
 - Economics: natural resources (G.W.), agriculture (G.W.)
 - Geography
 - Political Science: between nations and states

Groundwater in Hydrologic cycle:

Hydrologic Budget:

Hydrologic Budget:

$$P + Q_{in} - Q_{out} + Q_g - E_s - T_s - I = \Delta S_s$$

P =is the precipitation,

 Q_{out} = out surface water flow

 E_s = surface evaporation

I = infiltration

 Q_{in} = into surface water flow

 Q_q = into groundwater

 T_s = transpiration

 ΔS_s = change of water storage

EXAMPLE 1.6.1

During 1996, the water budget terms for Lake Annie in Florida⁶⁰ included precipitation (P) of 43 inch/yr, evaporation (E) of 53 inch/yr, surface water inflow ($Q_{\rm in}$) of 1 inch/yr, surface outflow ($Q_{\rm out}$) of 173 inch/yr, and change in lake volume (ΔS) of -2 inch/yr. Determine the net groundwater flow (the groundwater inflow minus the groundwater outflow).

SOLUTION

Assuming $T_g = 0$, the water budget equation (1.6.4) to define the net groundwater flow for the lake is

$$G = \Delta S - P + E - Q_{\rm in} + Q_{\rm out}$$

$$=-2-43+53-1+173$$

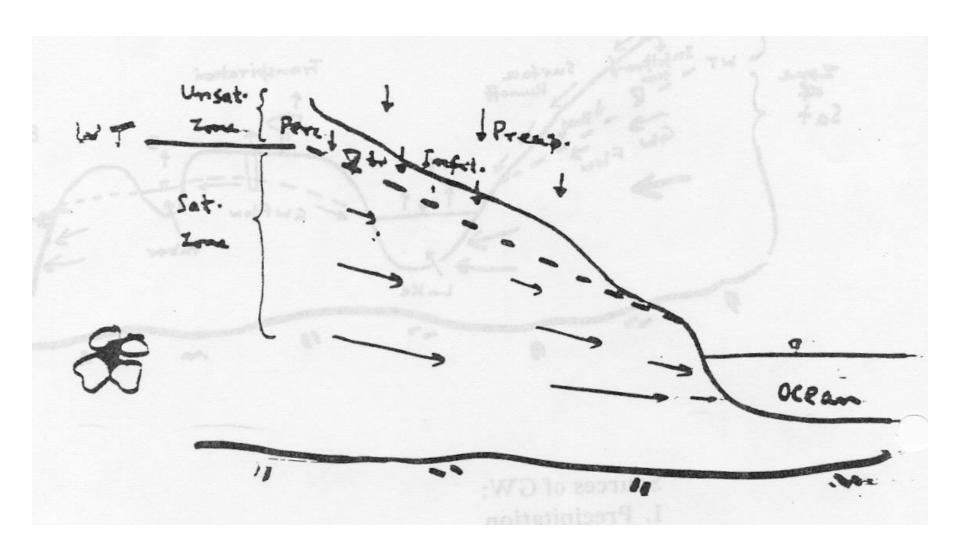
$$= 180 \text{ inch/yr}$$

EXAMPLE 1.6.2

During January 1996, the water-budget terms for Lake Annie in Florida⁶⁰ included precipitation (P) of 1.9 inch, evaporation (E) of 1.5 inch, surface water inflow (Q_{in}) of 0 inch, surface outflow (Q_{out}) of 17.4 inch, and change in lake volume (ΔS) of 0 inch. Determine the net groundwater flow for January 1996 (the groundwater inflow minus the groundwater outflow).

SOLUTION

The water budget equation to define the net groundwater flow for the lake is


$$G = \Delta S - P + E - Q_{in} + Q_{out} = 0 - 1.9 + 1.5 - 0 + 17.4 = 17$$
 inch for January 1996

- Sources of GW
 - Precipitation
 - Natural recharge
 - Artificial recharge

- Disposal of Groundwater
 - Outflow stream, spring, lake, ocean
 - Use of water wells, drains
 - Evapotranspiration

- Groundwater as Resource
 - "Renewable" natural resource
 - Largest fresh water source
 - concerned with its development and management

- Groundwater Occurrence
 - GW occurs in saturated and unsaturated zones,
 but GW supply tapped from saturated zones.

- Infiltration water entering the ground.
- Percolation water movement within the ground
- Unsat. Zone water percolates vertically downward
- Sat. Zone water percolates horizontally and may move in any direction depending on the boundaries of the aquifer.

- Historical Background
 - Water Development
 - Groundwater development described from 800 BC
 - Dug Well

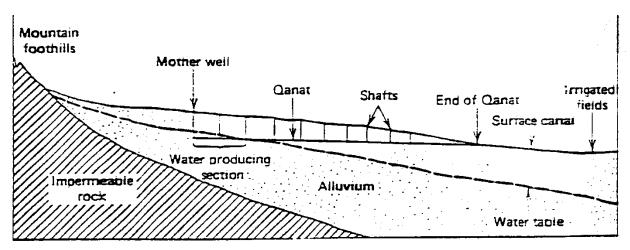


Fig. 1.1 Vertical cross section along a qanat (after Beaumont⁵).

- Kanat (Qanat)
 - Iran and Egypt
 - Avg. Length = 5km
 - -Q = 400 l/s = 35000 m³/d = 6420 gpm
 - No. = 35,000
 - Water runs to waste due to continuous flow in canals.

- 17th Century
 - Perrault rainfall and runoff estimates for a river basin
 - Mariotte infiltration theory
 - Halley evaporation

- 18th Century
 - Fundamentals of geology established with a basis for understanding the occurrence and movement of groundwater.

- 19th Century
 - Henry Darcy
 - Darcy's Law
 - Well Drilling
 - Groundwater Hydraulics Boussinesq, Dupuit,
 Forcheimer, Thiem

- 20th Century
 - USGS: data collection in the U.S.

Groundwater use in the U.S.

_	<u>Year</u>	B.G.D.
	1935	10
	1945	20
	1960	50
	1975	80
	1985	110

- G.W. / T.W. = 20% and increasing (US)
- G.W. / T.W. = 87% (Kansas)
- G.W. / T.W. = 63% (Oklahoma)

- Relative use of Groundwater in the US
 - Irrigation 65%
 - 91% in 17 western states.
 - Industry 21%
 - Public Supply 10%
 - Rural Supply 4%

- Top Industrial Uses of Groundwater
 - Oil Refinery
 - Paper Manufacturing
 - Metal Manufacturing
 - Chemical Manufacturing
 - Air Conditioning and Refrigeration Plants
 - Distilling
 - Ice Manufacturing
 - Food Processing
 - Food Processing
 - Nuclear Power Plants

World's water distribution - Table 1.1

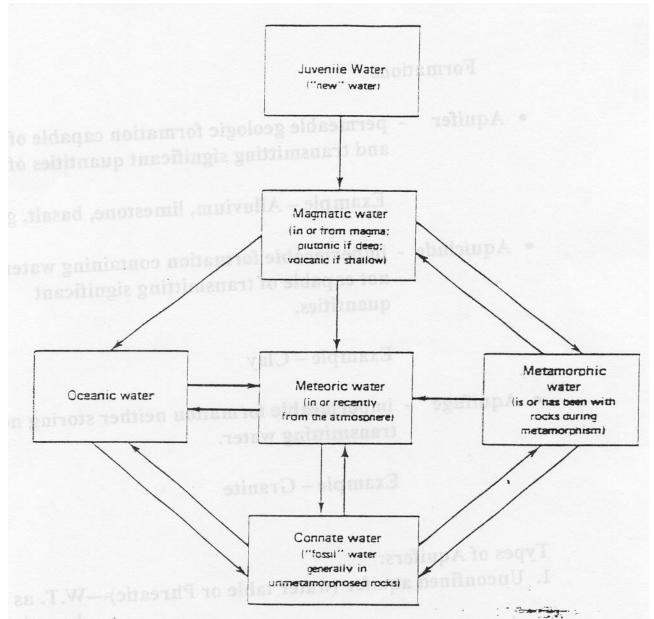
	% of total water
(1) Surface water	99.3711
Salt water in oceans	97.2
Salt water in lakes + inland areas	0.008
Fresh water in lakes	0.009
Fresh water in streams	0.0001
Fresh water in glaciers + icecaps	2.15
Water in biomass	0.004
(2) Groundwater	0.625
Unsaturated zone	$\frac{0.005}{0.005}$
GW within 0.8 km (shallow perco	
GW 0.8-4.0 km (deep percolation	
(3) Atmospheric water	0.001
	100.00%

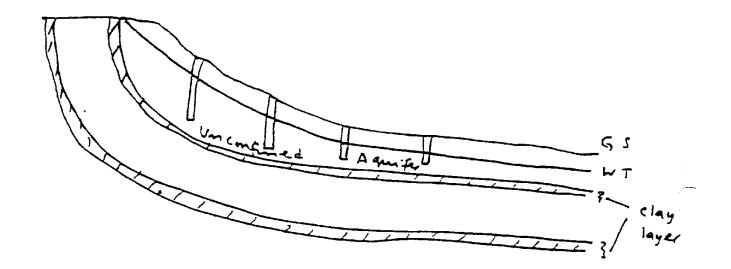
- Compare
 - Shallow GW 0.31%
 - Fresh water in lakes and streams 0.0091%
 - Fresh water in glacier icecaps 2.15%

- Origins of Groundwater
 - Meteoric Water:
 - Water infiltrated from precipitation, lakes and streams
 - Part of the hydrologic cycle
 - Recent geologic time, generally good quality

- Origins of Groundwater
 - Connate Water
 - Water entrapped in sedimentary rocks at the time of deposition
 - Isolated from the hydrologic cycle, though of atmospheric origin
 - Found in lower parts of deep GW
 - Highly mineralized; in contact with salt deposits
 - Much older than meteoric water

- Origins of Groundwater
 - Juvenile Water
 - Formed within earth; of volcanic or magmatic origin
 - Can move up with volcanic activity
 - Not part of the hydrologic cycle
 - Highly mineralized; insignificant as a water resource




Fig. 2.1 Diagram illustrating relationships of genetic_types of water (after White⁴⁹: courtesy The Geological Society of America, 1957).

Formations

- Aquifer: permeable geologic formation capable of storing and transmitting significant quantities of water.
 - Ex. alluvium, limestone, basalt, gravel
- Aquiclude: impermeable formation containing water, but not capable of transmitting significant quantities
 - Ex. clay

- Formations
 - Aquifuge: impermeable formation capable of neither storing nor transmitting water
 - Ex. Granite

- Types of Aquifers
 - Unconfined Aquifer: WT as upper boundary

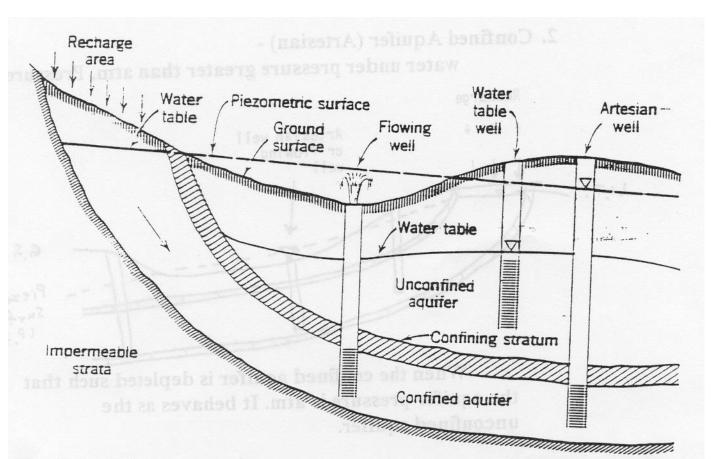
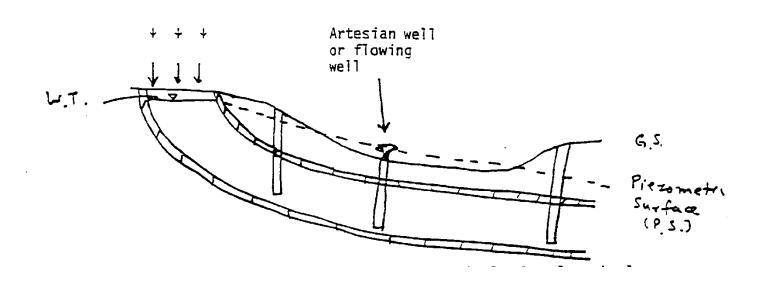



Fig. 2.11 Schematic cross section illustrating unconfined and confined aquifers.

- Confined Aquifer: water under pressure greater than atmospheric pressure.
 - When the confined aquifer is depleted such that the aquifer pressure is atmospheric, it behaves as an unconfined aquifer.

- Semi-Confined Aquifer (Leaky):
 - WT > PS, water moves from UA to CA
 - WT < PS, water moves from CA to UA

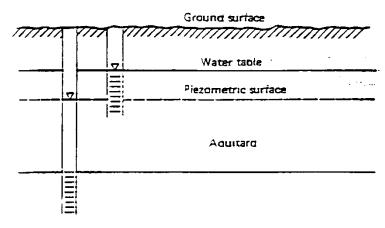


Fig. 2.13 Sketch of a leaky, or semiconfined, aquifer.

Leaky acquirer

Perched Aquifer: Upper WT of limited extent.
 False WT

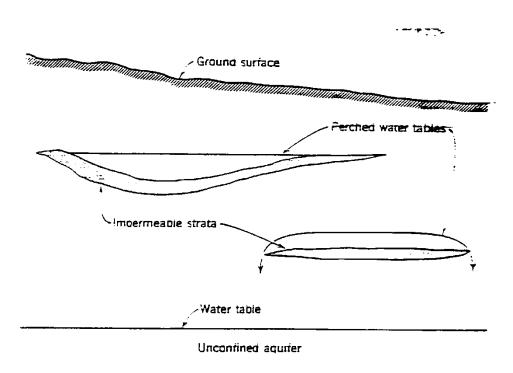


Fig. 2.12 Sketch of perched water tables.