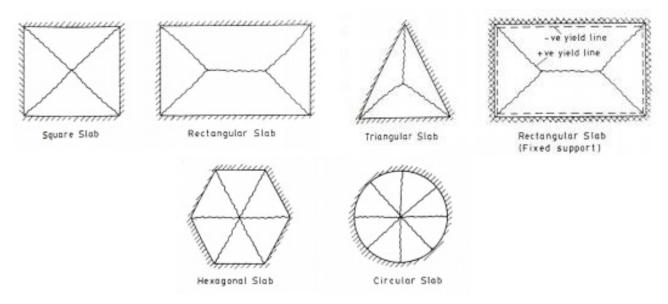


Mustansyriah University College of Engineering Civil Engineering Department 4th Stage

Reinforced Concrete-II

Yield Line Analysis of Slabs

Prof. Dr. Ali Hameed Aziz


T.D Building and Construction (Bahsra Technical Institute) 1988 BSc. Civil Engineering (University of Baghdad) 1994 MSc. Civil Engineering-Structures (Jordan University) 2000 Ph.D. Civil Engineering-Structures (Al-Mustansiriyah University) 2006 Assist. Prof. 2010 Professor 2017

October 2021

Prof. Dr. Ali H. Aziz-1

<u>1-Yield Line Analysis of Slabs</u>

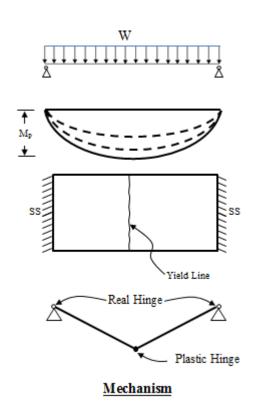
A method of slab analysis, which permits the determination of failure moments in slabs of irregular, as well as rectangular shapes for a variety of support conditions and loading.

In a slab failing in flexure, the reinforcement will yield first in a region of high moment. When that occurs, this portion of the slab acts as a plastic hinge, only able to resist its hinging moment. When the load is increased further, the hinging region rotates plastically, and the moments due to additional loads are redistributed to adjacent sections, causing them to yield. The bands in which yielding has occurred are referred to as yield lines and divide the slab into a series of elastic plates. Eventually, enough yield lines exist to form a plastic mechanism in which the slab can deform plastically without an increase in the applied load.

In the yield-line method for slabs, the loads required to develop a plastic mechanism are compared directly to the plastic resistance (nominal strength) of the member.

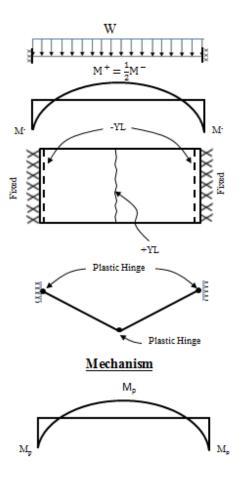
For the Hinged Slab (Simply Supported)

As load increase, $M_{max} \rightarrow M_{ult.}$


- \rightarrow Tension steel yields along line of M_{max}
- \rightarrow Curvature increase sharply,
- \rightarrow Deflection increase sharply,
- \rightarrow "Plastic Deformation",
- \rightarrow a "Hinge" form at "Yield Line",
- \rightarrow "Plastic Hinge",
- At plastic hinge, $M_P = M_n$,

A "Mechanism" forms (segment of the slab move),

 \rightarrow Failure (Collapse).


<u>Note</u>

 $M_n = \rho.b.d^2 f_y (1-0.59\rho \frac{f_y}{f_c'})$

For the Fixed Slab (Intermediate)

- As load increase, M_{max}^- and $M_{max}^+ \rightarrow M_{ult.}$
- \rightarrow Tension steel yields at critical sections,
- \rightarrow Rotation occurs,
- \rightarrow At supports $M^-=M_P$ then "Two Plastic Hinge" forms,
- \rightarrow At mid span $M^+=M_P$ a third "Plastic Hinge" forms,
- \rightarrow A "Mechanism" forms (segment of the slab move),
- →Unstable,
- \rightarrow Failure (Collapse).

2-Mechanism

The segment of the slab between the hinge and the supports are able to move without an increase in load (collapse).

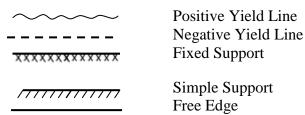
<u>3-Location of Yield Line</u>

Yield Line location and orientation is evident in simple and fixed slab. For the other cases, the axis of rotation will be located along the lines of supports or over point supports (columns). The slab segments rotate as rigid bodies about these axes of rotation.

+YL= Associated with tension at <u>BOTTOM</u> of slab.

-YL= Associated with tension at <u>TOP</u> of slab.

4-Guide lines for drawing axes of rotation and yield lines


1-Yield lines are straight.

2-Axes of rotation lie along lines of support (the support line may be a real hinge or it may establish the location of a yield line which acts as a plastic hinge).

3-Axes of rotation pass over columns (supports).

4-A yield line (or its extend) passes through the intersection of the axes of rotation of adjacent slab segments.

Notion

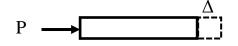
Isotropically Reinforced Slab The resisting moment is the same along any line regardless of its location. **Orthogonally Anisotropic (or orthotropic) Reinforced Slab** The resisting moments are different in two perpendicular directions.

5-Method of Analysis

There are two methods of analysis according to Yield Line:-

1-Virtual work method (Mechanism method).

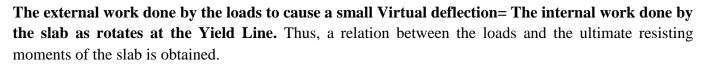
2-Equilibrium method (Statical method).


6-Yield Line Analysis by the Virtual work method

There are two types of Virtual work:-

<u>1-Translational Virtual work</u>

In this case, the displacement (Δ) shall be in the same direction of force (P) and the work done is:-


Work done = $P \times \Delta$

2-Rotational Virtual work

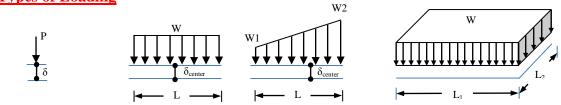
In this case, the rotation (θ) shall be in the same direction of moment (M) and the work done is:-

Work done = $M \ge \theta$

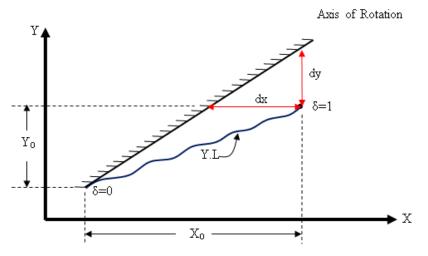
External work (W_E) = **Internal work** (W_I)

External work (W_E) =Load x Displacement (Deflection)

 \rightarrow For concentrated load, (W_E)= Px δ


 \rightarrow For line load, (W_E)= Wx L x δ_{center}

 \rightarrow For uniformly distributed load, (W_E)= Wx Area x δ_{center}


Internal work (W_I) =Moment x Rotation

 $= m x L x \theta$

7-Types of Loading

8-Rotation about Inclined Axis

Y_o=Projection of Yield Line on Y-Axis.

X_o=Projection of Yield Line on X-Axis.

dy=Vertical distance measured from (δ) to Axis of Rotation.

dx=Horizontal distance measured from (δ) to Axis of Rotation.

 δ =Deflection at any point lie along Yield Line.

Internal work (W_I) = m*L_x*
$$\theta_x$$
+ m*L_y* θ_y = m*X_o* $\frac{\delta}{dy}$ + m*Y_o* $\frac{\delta}{dx}$

References

- 1- Design of Concrete Structure, Arthur Nilson; David Darwin; Charles Dolan Nilson 15th Edition.
- 2-Reinforced Concrete Design, Wang C.K. and Salmon C.G.,4th Edition 1985
- 3- Building Code Requirements for Reinforced Concrete ACI 318M-14
- 4- Reinforced Concrete Fundamentals, Ferguson Phil M., 4th Editions 1981.
- 5- Design of Reinforced Concrete, McCormac, J. and Nelson, K., 7th Edition, (2006).
- 6- Reinforced Concrete Design, Leet, K. and Bernal, D., 3rd Edition, (1997).
- 7- Reinforced Concrete, Nawy, E., 6th Edition, (2009).

8- تصميم المنشاءات الخرسانية المسلحة وفقا لمتطلبات الكود ACI 318-02 جمال عبد الواحد 9-محاضرات تصاميم الخرسانة المسلحة- (ا.د.هشام الحسني)-المرحلة الرابعة-1993-قسم الهندسة المدنية-جامعة بغداد.