Traffic Engineering Lecture 16

Prof. Dr. Zainab Alkaissi

Single Left Turn Lane

Left Turn Bay

Overflow and Blockage

Available Methods

Existing Methods by Categories Rule of Thumb Methods			Reference	Major Results
			 TxDOT Roadway Design Manual NCHRP Report 279 NCHRP Report 348 	• Equations (4) & (5)
Analytical-Based Methods	Unsignalized Intersections	Regression based	• Basha (1992) • Gard (2001)	 Equations (8) and (9) Table 9
		Queuing theory based	Lertworawanich et al. (2003)	• Table 10
		Vehicle arrivals in a given interval	• NDOR Roadway Design Manual (2005)	Equations (13) to (15) Table 11
	Signalized Intersections	Queuing theory based	• Oppenlander at al (1989)	• Equations (16) to (18) • Table 12
		DTMC based	• Kikuchi et al.(1993)	• Tables 13 and 13
		Vehicle arrivals in the red phase	• Kikuchi et al.(2004)	• Table 14
Simulation-Based Methods			 Oppenlander et al. (1994, 1996, 1999 and 2002) Lakkundi et al. (2004) 	• Tables 15 and 16 • Figures 7 and 8

Rule of Thumb Method

 $L = K \left(\frac{V}{N_c} \right) S$ for signalized intersection

 $L = K \left[\frac{V}{(3600/I)} \right] S$ for unsignalized intersection

- \blacktriangleright L= storage length (ft).
- \blacktriangleright V= left- turn flow rate during the peak hour (vph).
- \blacktriangleright K= a constant to reflect random arrival of vehicles (usually 2)
- \triangleright N_c= number of cycles per hour (for signalized intersection)
- \blacktriangleright I = average vehicle waiting interval in seconds (for unsignalized intersection)
- > S = average queue storage length per vehicle (average distance, front bumper- to bumper of a car in queue).

Queuing Based Method: Signalized

 $n = (log P_n - log (1 - \lambda/\mu)/log(\lambda/\mu))$

- \blacktriangleright n = number of vehicles in the queue.
- \triangleright P_n=probability of n vehicles in the queue.
- \succ λ = arrival rate, equivalent passenger cars per seconds (pcps).
- > μ = service rate, equivalent passenger cars per second (pcps).

And, λ and μ can be estimated by following Equations:

 $\lambda = 1.1 \times {}^{V}\!/_{3600}$

 $\mu = S \times (G/C) 3600$

- ➤ "1.1 "= adjustment factor for the equivalence of left- turn vehicles with a separate phase.
- \blacktriangleright V = left- turn volume, equivalent passenger cars per hour (pcph).
- \blacktriangleright S = lane saturation flow, equivalent passenger cars per hour of green (pcphg).
- $\sim G/_{C}$ = ratio of green time to cycle length (cycle split) for the turning- lane phase.

Regression Based Method-Unsignalized

Since queuing is not prevalent

 $\boldsymbol{Q} = \boldsymbol{f}_2(\boldsymbol{D},\boldsymbol{G})$

 $\boldsymbol{G} = \boldsymbol{f}_1(\boldsymbol{V})$

- Q=maximum left-turn lane length, in vehicles.
- \blacktriangleright D= left- turn volume, in vehicles per intervals.
- \blacktriangleright G= total acceptable gap times in opposing traffic in a specific interval, sec.
- \blacktriangleright V= opposing traffic volume, in vehicles per interval.

The function f_1 and f_2 were derived by regression analysis and the general forms of these two equations were given in Equation (7).

 $G = f_1(V) = \alpha_1^G V^{\beta_1^G}$