Analysis of Weaving, Merging, and Diverging Movements

Weaving, Diverging, Merging Segments

- Weaving one movement must cross the path of another along a length of facility without the aid of signals or other traffic control devices
- Merging two separate traffic streams join to form a single one
- **Diverging** one traffic stream separates to form two separate traffic streams
- Why do we consider these separately from BFS/Multilane Segments?

LOS for W/M/D Segments

	W	eaving Areas	Merge or Diverge Areas	
	Density Range (pc/mi/ln)			
Level of Service	On Freeways	On Multilane Highways or C-D Roadways	On Freeways, Multilane Highways, or C-D Roadways	
A	0-10	0–12	0-10	
В	>10-20	>12-24	>10-20	
С	>20-28	>24-32	>20-28	
D	>28-35	>32-36	>28-35	
E	>35	>36	>35	
F	Demand Exceeds Capacity			

(*Source:* Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, 2000. Compiled from Exhibit 24-2. p. 24-3. and Exhibit 25-4. p. 25-5.)

Flows in a Weaving Segment and the Weaving Diagram

Weaving Configuration Parameters

Influence Areas for Merge, Diverge, and Weaving Segments (Source: Used with permission of Transportation Research Board, National Research Council, modified from Highway Capacity Manual, 2000, Exhibit 13-13, p. 13-21.)

Weaving Analysis- Input Requirements

Existing roadway and traffic conditions are required, including:

- Length and width of weaving area
- > Number of lanes
- > Type of configuration
- > Terrain/grade conditions
- > FFS
- ➤ Hourly volumes

Symbol Definition

V _{FF}	freeway-to-freeway demand flow rate in the weaving section (pc/h)
v _{RF}	ramp-to-freeway demand flow rate in the weaving section (pc/h)
v _{FR}	freeway-to-ramp demand flow rate in the weaving section (pc/h)
V _{RR}	ramp-to-ramp demand flow rate in the weaving section (pc/h)
v_W	weaving demand flow rate in the weaving section (pc/h): $v_W = v_{RF} + v_{FR}$
V _{NW}	non-weaving demand flow rate in the weaving section (pc/h); $v_{NW} = v_{FF} + v_{RR}$
v	total demand flow rate in the weaving section (pc/h), $v = v_W + v_{NW}$
VR	volume ratio: $VR = v_W/v$
Ν	number of lanes within the weaving section
N_W	number of lanes from which a weaving maneuver may be made with one or no lane changes.
S_{W}	average speed of weaving vehicles within the weaving section (mi/h)
S _{NW}	average speed of non-weaving vehicles within the weaving section (mi/h)
S	average speed of all vehicles within the weaving section (mi/h)
FFS	free-flow speed of the weaving section (mi/h)

Symbol Definition

D	average density of all vehicles within the weaving section (pc/mi/ln)
W	weaving intensity factor
L _S	length of the weaving section (ft), based on short length definition.
LC _{RF}	minimum number of lane changes that must be made by a single weaving vehicle moving from the on-ramp to the facility.
LC _{FR}	minimum number of lane changes that must be made by a single weaving vehicle moving from the facility to the ramp.
LC _{MIN}	minimum rate of lane changing that must exist for <i>all</i> weaving vehicles to successfully complete their weaving maneuvers (lc/h) $LC_{MIN} = (LC_{RF} \times v_{RF}) + (LC_{FR} \times v_{FR})$
LC_W	total rate of lane changing by weaving vehicles within the weaving section (lc/h)
LC _{NW}	total rate of lane changing by non-weaving vehicles within the weaving section (lc/h)
LCALL	total lane-changing rate of all vehicles within the weaving section (lc/h) $LC_{ALL} = LC_W + LC_{NW}$

Step-1: Input Data

Ensure to write all the input data in one place before analyzing the weaving section

Step-2: Determining Flow Rate

 $\mathbf{v}_{i} = \frac{\mathbf{V}}{\mathbf{PHF} * \mathbf{N} * \mathbf{f}_{\mathbf{HV}} * \mathbf{f}_{\mathbf{p}}}$

- ✓ vi: Demand flow rate, pc/h, under equivalent based conditions
- ✓ Vi: Demand volume, veh/hr under prevailing conditions
- ✓ PHF: Peak Hour Factor
- ✓ f_{HV} : Heavy-vehicle adjustment factor
- ✓ f_p : Driver-population adjustment factor

Step-3: Determine Configuration Characteristics

• One Sided Weaving

- LC_{RF} minimum # of lane changes that a ramp-to-facility weaving vehicle must make to successfully complete the ramp-to-facility movement.
- LC_{FR}- minimum # of lane changes that a facility-to-ramp weaving vehicle must make to successfully complete the facility-to-ramp movement.
- N_{WV}- number of lanes from which a weaving maneuver may be completed with one lane change, or no lane change.

$\mathsf{LC}_{\mathsf{MIN}} = (\mathsf{LC}_{\mathsf{FR}} \leftrightarrow \mathsf{V}_{\mathsf{FR}}) + (\mathsf{LCRF} \leftrightarrow \mathsf{V}_{\mathsf{RF}})$

Two Sided Weaving

- 400

- > L_{RR} minimum number of lane changes required for 'ramp-to-ramp' movement.
- > N_{WV}=0 (only vehicles moving ramp to ramp are considered to be weaving

LCMIN - (LCRR↔U RR)
v_{W}	total weaving demand flow rate within the weaving section (pc/h) $v_W = v_{RR}$
V _{NW}	total non-weaving demand flow rate within the weaving section (pc/h) $v_{NW} = v_{FR} + v_{FF} + v_{FF}$
LC _{RR}	minimum number of lane changes that must be made by <i>one</i> ramp-to-ramp vehicle to complete a weaving maneuver.
LC _{MIN}	minimum rate of lane changing that must exist for <i>all</i> weaving vehicles to successfully complete their weaving maneuvers (lc/h) $LC_{MIN} = (LC_{RR} \times v_{RR})$

Weaving Variables Defined for One-Sided Weaving Segments (Source: Roess, R., et al., Analysis of Freeway Weaving Sections, Final Report, Draft Chapter for the HCM, National Cooperative Highway Research Program Project 3-75, Polytechnic University and Kittelson and Associates, Brooklyn, NY, September 2007, Exhibit 24-7, p. 12.)

Weaving Variables Defined for Two-Sided Weaving Segments (Source: Roess, R., et al., Analysis of Freeway Weaving Sections, Final Report, Draft Chapter for the HCM, National Cooperative Highway Research Program Project 3-75, Polytechnic University and Kittelson and Associates, Brooklyn, NY, September 2007, Exhibit 24-8, p. 13.)

Step-4: Maximum Weaving Length

 $L_{MAX} = [5728(1 + VR)^{1.6}] - 1.566N_{VW}$

Measuring the Length of a Weaving Segment (Source: Roess, R., et al., Analysis of Freeway Weaving Sections, Final Report, Draft Chapter for the HCM, National Cooperative Highway Research Program Project 3-75, Polytechnic University and Kittelson and Associates, Brooklyn, NY, September 2007, Exhibit 24-2, p. 2.)

Step-5: Capacity of the Weaving Segment

Based on Breakdown Density

Calculate C_{IWL} (cap per lane of weaving section under ideal conditions):

 $C_{IWL} = C_{IFL} - [438.2(1 + VR)^{1.6}] + [0.0765L_s] + [119.8N_{WV}]$

Convert C_{IWL} to total capacity for the weaving segment under prevailing conditions:

 $\mathbf{C_{W1}} = \mathbf{C_{IWL}} \times \mathbf{N} \times \mathbf{f_{HV}} \times \mathbf{f_{p}}$

Capacity Values – CIFL

Freeways		Multilane Highways and C-D Roadways	
FFS (mi/h)	Capacity (pc/h/ln)	FFS (mi/h)	Capacity (pc/h/ln)
≥70	2,400	≥ 60	2,200
65	2,350	55	2,100
60	2,300	50	2,000
55	2,250	45	1,900

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

• Based on Maximum Weaving Flow Rate

Calculate C_{IW} (based on # weaving lanes):

 $C_{IW} = \frac{2400}{VR}$ For $N_{WL} = 2$ lanes $C_{IW} = \frac{3500}{VR}$ For $N_{WL} = 3$ lanes

Convert C_{IW} to total capacity for the weaving segment under prevailing conditions:

 $C_{W2} = C_{IWL} \times f_{HV} \times f_p$

Prof. Dr. Zainab Alkaissi

• Final Capacity and v/C ratio

$$C_W = Min (CW_1, CW_2)$$

$$v_{/c} = \frac{v f_{HV} f_p}{C_W}$$

if $V/_c > 1.0$ LOS = F, and STOP

Step-6: Total Lane Changing

• For Weaving Vehicles

Total lane changing rate for weaving vehicles

 $LC_W = LC_{MIN} + 0.39[(L_S - 300)^{0.5} N^2 (1 + ID 0.8]^{0.8}]$

• For Non-Weaving Vehicles

 $LC_{NW1} = 0.206\nu_{NW} + 0.542L_s - (192.6N)$

 $LC_{NW2} = 02135 + 0.2234(v_{NW} - 2000)$

• Lane Changing Index

Total lane changing rate for weaving vehicles

• For Non-Weaving Vehicles

 $I_{NW} = \frac{L_s I D v_{NW}}{10,000}$

- If $I_{NW} < 1300 \ LC_{NW} = LC_{NW1}$
- If $I_{NW} > 1950 \ LC_{NW} = LC_{NW2}$
- If $1300 < I_{NW} < 1950$

$$LC_{NW} = LC_{NW1} + (LC_{NW2} - LC_{NW1})(\frac{I_{NW} - 1300}{650})$$

• Total Lane Changing

 $LC_{ALL} = LC_{NW1} + LC_{NW2}$

Step-7: Average Speed

Weaving Vehicles

$$S_W = S_{MIN} + (\frac{S_{MAX} + S_{MIN}}{1 + W})$$

$$W = 0.226(\frac{LC_{ALL}}{L_s})^{0.789}$$

• Non-Weaving vehicles

 $S_{NW} = FFS - (0.0072LC_{MIN}) + (0.0048 v/N)$

• Average Speed

$$S = \frac{V_W + V_{NW}}{\frac{V_W}{S_W} + \frac{V_{NW}}{S_{NW}}}$$

Step-8: Determine Density

$$\mathbf{D} = \frac{\binom{\mathbf{V}}{\mathbf{N}}}{\mathbf{S}}$$

Where:

✓ D is the density for all vehicles in the weaving segment $(pc \ ln)$

LOS for W/M/D Segments

Table: Level-of-Service Criteria for Weaving, Merging, and Diverging Segments

	w	eaving Areas	Merge or Diverge Areas	
	Density Range (pc/mi/ln)			
Level of Service	On Freeways	On Multilane Highways or C-D Roadways	On Freeways, Multilane Highways, or C-D Roadways	
A	0-10	0-12	0-10	
В	>10-20	>12-24	>10-20	
С	>20-28	>24-32	>20-28	
D	>28-35	>32-36	>28-35	
E	>35	>36	>35	
F	Demand Exceeds Capacity			

(*Source:* Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, 2000. Compiled from Exhibit 24-2, p. 24-3, and Exhibit 25-4, p. 25-5.)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

<u>HW1</u>.

What are the level of service and capacity of the weaving segment on the urban freeway shown below? ID = 0.8 int./mi -10 percent trucks; PHF=0.91; level terrain; fp=1, FFS=65 mph

Prof. Dr. Zainab Alkaissi

<u>HW2</u>.

A typical ramp weave section on a six lane freeway (three lanes in each direction). Determine LOS under prevailing conditions.

