
24

Chapter Seven

Repetition Loops

Repetition loops are used to repeat part of a program a specified number of times.
The start and end of the repeated block must be identified. The program does not
move to the next part unless finishing the loop. There are two methods in MATLAB
to create loops:

− Using (for) loop.
− Using (while) loop.

Use of loops in MATLAB should always be avoided except for certain cases. The
program becomes somewhat slow if it contains loops. The inherent repeating
property in MATLAB which is called (vectorization) should always be used for
efficient programming. In vectorization all elements in the matrix are automatically
considered by the program without the need to generate a loop. Loops are
restricted to cases when the matrix elements are needed be considered one by one
not as a whole group in vectorization.

7.1 (for) loops

The loop using (for) command are generated as follows:

Ex. 7.1 Write MATLAB program to evaluate the function y=x2 by vectorization once
and by (for) loop once again. Enter x as the numbers from 1 to 10.

Sol. Method (1): using vectorization

 clear,clc

 x=1:10;

 y=x.^2;

 disp([x',y'])

for index = matrix

Programming Task

(repeats as many as matrix elements)

end

25

Method (2): using (for) loop

 clear,clc
 for x=1:10

 y=x^2;

 disp([x,y])

 end

Ex. 7.2 Repeat the last program using five arbitrary numbers and a loop.

 clear,clc

 for x=[2 -3 7 5 -4]

 y=x^2;

 z=x+5;

 disp([x,y,z])

 end

Note: The printing statement should always be placed inside the loop, before (end),
to ensure the display of all numbers, not only the last number or last line in a table.

Ex. 7.3 Write Matlab code to evaluate the function 𝑦 =
𝑥−1

𝑥+1
 for 7 values of x equally

spaced from 1 to 10. Use (for) loop and display 1 decimal digit of x and 3 decimal
digits of y.

Sol. clear,clc
 for x=linspace(1,10,7)

 y=(x-1)/(x+1);

 fprintf(' %5.1f %5.3f \n',[x,y])

 end

Run: 1.0 0.000

 2.5 0.429

 4.0 0.600

 5.5 0.692

 7.0 0.750

 8.5 0.789

 10.0 0.818

26

Ex. 7.4 Write Matlab program to enter a group of arbitrary 10 numbers. If there is

any negative number within the group, replace it with zero. Print the old and the
modified matrices. Apply vectorization and loops methods.

Sol. Method (1): Vectorization

 clear,clc

 x=[-1 5 -2 -5 4 6 7 -6 -4 8];

 disp(x)

 neg=find(x<0);

 x(neg)=0;

 disp(x)

 Method (2): Looping

 clear,clc

 x=[-1 5 -2 -5 4 6 7 -6 -4 8];

 disp(x)

 for i=1:length(x)

 if x(i)<0

 x(i)=0;

 end

 end

 disp(x)

Ex. 7.5 Write MATLAB program to evaluate the natural logarithm of ten arbitrary
numbers using loops. Discard any negative or zero numbers.

Sol.

 clear,clc

 for x=[2 -3 4 -5 -6 8 -4 7 3 -9];

 if x>0

 y=log(x);

 fprintf(' %2.0f %4.2f \n',[x,y])

 elseif x<=0

 fprintf(' %2.0f not pssible \n',x)

 end

 end

27

Ex. 7.6 Write MATLAB program to evaluate the following function for the given
values of x. Use vectorization and (for) loop methods.

𝑦 =
 𝑥 + 1

𝑥2 − 1
 𝑥 > 1

𝑥2 + 𝑥 − 1 𝑥 ≤ 1

x = { −2 4 3 −1 −5 8 6 9 }

Sol.

 Method (1): Using Vectorization

 clear,clc

 x=[-2 4 3 -1 -5 8 6 9];

 a=find(x>1);

 x_pos=x(a);

 b=find(x<=1);

 x_neg=x(b);

 y_pos = sqrt(x_pos + 1)./(x_pos.^2 - 1);

 y_neg = x_neg.^ 2 + x_neg - 1;

 fprintf(' %4.0f %6.4f \n ',[x_pos;y_pos])

 fprintf(' %4.0f %6.4f \n ',[x_neg;y_neg])

 Method (2): Using Loops

 clear,clc

 for x=[-2 4 3 -1 -5 8 6 9];

 if x>1

 y = sqrt(x + 1)/(x^2 - 1);

 else

 y = x ^ 2 + x - 1;

 end

 fprintf(' %4.0f %6.4f \n ',[x,y])

 end

