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Chapter 4: Semiconductor in 
Equilibrium

Equilibrium; no external forces such as voltages, electrical 
fields, magnetic fields, or temperature gradients are acting on 
the semiconductor
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Particles that can freely move and contribute to the current flow (conduction)

T>0K

1. Electron in conduction band
2. Hole in valence band

carrier



How to count number of carriers,n?

If we know 
1. No. of energy states

2. Occupied energy states

Density of states (DOS)

The probability that energy states is 
occupied
“Fermi-Dirac distribution function”

n = DOS x “Fermi-Dirac distribution function”

Assumption; Pauli exclusion principle
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Fermi-Dirac distribution
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Probability of electron having certain energy

f (E)
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Fermi energy, EF

EF;  the energy below which all states are filled with electron and above 
which all states are empty at 0K
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Thermal equilibrium concentration of electron, no
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NC; effective density of states 
function in conduction band
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Ex. 1
Calculate the thermal equilibrium electron concentration in Si at T= 300K.
Assume that Fermi energy is 0.25 eV below the conduction band. The value of Nc for Si 
at T=300 K is 2.8 x 1019 cm-3. 



Thermal equilibrium concentration of hole, po
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function in valence band



Ex.2

Calculate the thermal equilibrium hole concentration in Si at T= 300K.
Assume that Fermi energy is 0.27 eV above the valence band. The value of Nv for Si at 
T=300 K is 1.04 x 1019 cm-3. 

Ec

Ev

EF

0.27 eV
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NC and Nv are constant for a given material (effective mass) and temperature
Position of Fermi energy is important

If EF is closer to EC than to Ev, n>p
If EF is closer to Ev than to EC, n<p



Intrinsic semiconductor; A pure semiconductor with no impurity atoms 
and no lattice defects in crystal

1. Carrier concentration(ni, pi)
2. Position of EFi

1. Intrinsic carrier concentration

Concentration of electron in conduction band, ni

Concentration of hole in in valence band, pi
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Ex. 3; Calculate the intrinsic carrier concentration in gallium arsenide (GaAs) 

at room temperature (T=300K). Energy gap, Eg, of GaAs is 1.42 eV. The 

value of Nc and Nv at 300 K are 4.7 x 1017 cm-3 and 7.0 x 1018 cm-3, 

respectively.  



2. Intrinsic Fermi level position, EFi

If EF closer to Ec, n>p

If EF closer to Ev, n<p

Intrinsic; n=p

EF is located near the center of the forbidden bandgap
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Mp = mn EFi = Emidgap

EFi shifts slightly from Emidgap



Efi is located near the center of Eg

no=po



Dopant atoms and energy levels

adding small, controlled amounts of specific dopant, or impurity, atoms 

Increase no. of carrier (either electron or hole)

Alter the conductivity of semiconductor

III         IV        V

B          C

Al         Si        P

Ga       Ge       As

In                    Sb

3 valence 

electrons

5 valence 

electrons

Consider Phosphorus (P) and boron (B) as 

impurity atoms in Silicon (Si)



1. P as substitutional impurity (group V element; 5 valence electron)

In intrinsic Si, all 4 valence electrons contribute to covalent bonding. 

In Si doped with P, 4 valence electron of P contribute to covalent bonding 

and 1 electron loosely bound to P atom (Donor electron).

Donor electron

can easily break the bond and freely moves 



Energy to elevate the donor electron into conduction band is less than that for 

the electron involved in covalent bonding

Ed(; energy state of the donor electron) is located near Ec

When small energy is added, donor electron is elevated to conduction band, 

leaving behind positively charged P ion

P atoms donate electron to conduction band P; donor impurity atom

No. of electron > no. of hole n-type semiconductor (majority carrier is electron)



2. B as substitutional impurity (group III element; 3 valence electron)

In Si doped with B, all 3 valence electron of B contribute to covalent 

bonding and  one covalent bonding is empty

When small energy is added, electron that involved in covalent bond will 

occupy the empty position leaving behind empty position that associated 

with Si atom

Hole is created



Electron occupying the empty state associated with B atom does not have 

sufficient energy to be in the conduction band no free electron is created

Ea (;acceptor energy state) is located near Ev 

When electron from valence band elevate to Ea, hole and negatively 

charged B are created   

B accepts electron from valence band B; acceptor impurity atom

No. of hole > no. of electron p-type material (majority carrier is hole)



Pure single-crystal semiconductor; intrinsic semiconductor

Semiconductor with dopant atoms; extrinsic semiconductor

p-typen-type

Dopant atom;

Majority carrier;

Donor impurity atom

electron

Acceptor impurity atom

hole

Ionization Energy

The energy that required to elevate donor electron into the conduction (in 

case of donor impurity atom) or to elevate valence electron into acceptor 

state (in case of acceptor impurity atom).



III-V semiconductors

GaAs

Group III Group V

Dopant atoms;

Group II (beryllium, zinc and cadmium) replacing Ga; acceptor

Group VI (selenium, tellurium) replacing As; donor
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Carrier concentration of extrinsic semiconductor

When dopant atoms are added, Fermi energy and distribution of electron and hole 

will change.

EF>EFi EF<EFi

Electron> hole

n-type
hole> electron

p-type 










 


kT

EE
Nn FC

Co

)(
exp








 


kT

EE
Np vF

vo

)(
exp

Thermal equilibrium concentration of electron

Thermal equilibrium concentration of hole

Ex. 4

Ec

Ev

EF

1.12 eV

0.25 eV
Band diagram of Si. At T= 300 K, 

Nc=2.8x1019cm-3 and Nv=1.04x1019cm-3. 

Calculate no and po.
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Change of Fermi energy causes change of carrier concentration.

no and po equation as function of the change of Fermi energy
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The nopo product
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Degenerate and Non degenerate semiconductors

Small amount of dopant atoms (impurity atoms) 

No interaction between dopant atoms

Discrete, noninteracting energy state.

EF at the bandgap

donor acceptor

Nondegenerate semiconductor

EF

EF



e

Large amount of dopant atoms (~effective density of states) 

Dopant atoms interact with each other

Band of dopant states widens and overlap the allowed band

(conduction @ valence band)

EF lies within conduction @ valence band

e

Ec

Ev

Filled states
EF

e

Ec

Ev empty states

EF

Degenerate semiconductor



Position of Fermi Energy Level

As a function of doping concentration and temperature

Equations for position of Fermi level (n-type)
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Equations for position of Fermi level (p-type)
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Example;

Silicon at T=300 K contains an acceptor impurity concentration of Na=1016 cm-3. 

Determine the concentration of donor impurity atoms that must be added so that 

the Silicon is n-type and Fermi energy is 0.20 eV below the conduction band 

edge. 
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Position of EF as function of donor concentration (n-type) and acceptor 

concentration (p-type)



Important terms

Intrinsic semiconductor; A pure semiconductor material with no impurity 

atoms and no lattice defects in the crystal

Extrinsic semiconductor; A semiconductor in which controlled amounts 

of donors and/or acceptors have been added so that the electron and hole 

concentrations change from the intrinsic carrier concentration and a 

preponderance of either electron (n-type) or hole (p-type) is created.

Acceptor atoms; Impurity atoms added to a semiconductor to create a p-

type material

Donor atoms; Impurity atoms added to a semiconductor to create n-type 

material



Nonequilibrium Excess Carriers
in Semiconductors



In this chapter, we will discuss the behavior of nonequilibrium electron and hole concentrations as a 

functions of time and space coordinates

Excess electrons in the conduction band and excess holes in the valence band 

may exist in addition to the thermal-equilibrium concentrations if an external 

excitation is applied to the semiconductor.

Excess electrons and excess holes do not move independently of each other.

They diffuse, drift, and recombine with the same effective diffusion coefficient, drift 

mobility and life time.

This phenomenon is called ambipolar transport.



Carrier Generation & Recombination

• Generation is the process whereby electrons and holes are created.

• Recombination is the process whereby electrons and holes are 
annihilated.

• In thermal equilibrium we have electrons breaking out of covalent 
bonds due to the acquisition of enough thermal energy to hop from 
the valence to the conduction band.  This creates both a free electron 
and a free hole (generation).

• For a specified period, there are free electrons that lose some of their 
thermal energy when they encounter a hole and fall back into covalent 
bond (recombination).



The Semiconductor in Equilibrium

00 pn GG 

and they will also recombine in pairs so

00 pn RR 

Given that thermally generated free electrons and holes must come in pairs 

00 pn GG 



0000 pnpn RRGG 

In thermal equilibrium the total number of free electrons 

and holes is constant so the rates at which they are 

being generated must be equal to the rates at which they 

are recombining.

The Semiconductor in Equilibrium



• External events, such as incident photons, can disrupt this equilibrium 
though and create additional electron-hole pairs.

• These “excess” charge carriers would be generated at equal rates for 
electrons and holes, so

''

pn gg 

Excess Carriers



The number of actual excess electrons and holes though are 
n and p.  Thus the total number of free electrons and holes 
in the semiconductor can now be written as:
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The excess electrons and holes would also recombine in pairs 
so we can write:

''

pn RR 

Excess Carriers


