
 1

Visual Basic - controlling program flow

Introduction

A procedure’s logic flows through statements left to right and from top to bottom.
Only very simple procedures can follow this unidirectional route. The power and
flexibility of a programming langua ge comes from its ability to use program control.
Program control entails making decisions based on conditions; looping – the repeated
execution of a group of statements; and nesting – the placing of one control structure
inside another.

Decisions
These are listed below.

If condition true Then do this. Applies a single condition,
If condition true Then do this
Else do this if condition false

Applies a single condition, but chose between
statements blocks

If condition 1 true Then do this
Else If condition 2 true do this

Applies more than one condition, but executes
only one of several blocks of statements

Select Case Several conditions testing the same quantity,
runs one of several blocks of code

These controlling statements are discussed in turn below.

1)
The first case comes in two versions. The forms are
If condition true Then do this
or
If condition true Then

statements to execute if condition true
End If
The first is a single line statement and has no ending End If.

2)
If condition true Then

do this
Else

do this if condition false
End If

3) This case is an extension of the previous case to multiple conditions.
If condition 1 true Then

do this, then go to end
ElseIf condition 2 true Then

do this, then go to end

 2

ElseIf condition 3 true Then
do this, then go to end
.
.(can have repeated ElseIf statements
.

Else
 do this if ALL previous conditions are false. (This Else clause need not be
present but is often there as a “catch-all”.
End If

Repeated ElseIf clauses are untidy if the same expression is being compared to a
succession of different values. In this case the Select Case is preferable. Suppose a
bonus depends on bonus rates which depend on the job classification, here
represented by jobClass having values 1, 2, … 10.
Select Case jobClass
 Case 1
 bonus = salary * 0.1
 Case 2
 bonus = salary * 0.09
 Case 3, 4 ‘ list can contain several values
 bonus = salary * 0.075
 Case 5 To 8 ‘ list can contain a range of values
 bonus = salary * 0.05
 Case Is > 8 ‘ list can use comparison
 bonus = salary * 0.02
 Case Else
 Bonus = 0
End Select

Loops
Do …Loop structures repeated run a segment of code. There are 4 variants. Each
one evaluates a condition to determine whether or not to continue running.

Do While condition
 statements run while condition is true
Loop
This form tests the condition before running the loop. It repeats the loop while the
condition remains True. The statements must eventually cause the condition to be
False or the loop will run foreve r. To stop an infinite loop press ESC or
CTRL+BREAK. The following example counts the occurrences of the target
string within the longstring.
Function CountStrings(longString As String, target As _
String)

Dim position As Integer, count As Integer
position = 1

 Do While InStr(position, longString, target, 1) >0
position = InStr(position, longString, _
 target, 1) +1
count = count + 1

 3

 Loop
 CountStrings = count
End Function

Do Until condition
 Statements
Loop
This tests condition before looping and runs until the condition becomes True . If
initially True the statements are not run at all. For example, the loop, below is not
run if the response is No.
response = MsgBox(“Do you want to process data?”, _

 vbYesNo)
Do Until response = vbNo
 Call ProcessData
 response = MsgBox(“Do you want to process more _
 data”, vbYesNo)
Loop

Do
 statements
Loop While condition
This form causes the loop to execute at least once and then tests the condition. to see
if it should be looped. It will be repeated while the condition is True . The following
example loops over cells A1 to A100 setting the font to red if the cell contains a letter
“t”.
Sub MakeRed()
 Dim rSearch As Object, c As Object, first As String
 Set rSearch = Worksheets(1).Range(“A1:A100”)
 Set c = rSearch.Find(“t”)
 If Not c Is Nothing Then
 first = c.Address
 Do
 c.Font.ColorIndex = 3
 Set c = rSearch.FindNext(c)
 Loop While (Not c is Nothing) And _

 (c.Address <> first)
Else

MsgBox “Text not found”
 End If
End Sub

Do
 statements
Loop Until condition
This form runs the loop at least once and stops when the condition becomes True .

You use a Do loop when you don’t know how many times the statements should be
run. If you know that they should be run for a specific number of times use a
For…Next loop. This uses a counter which increases or decreases on each repetition
of the loop and ends when this counter reaches a set value. For example

 4

For i = lowerBound To upperBound Step n
 statements
Next i
starts w ith i =lowerBound and increments i by amount n until it reaches
upperBound. The bounds are integer quantities, and Steps controls the
increments (which may be negative).

For Each element In group
 statements
Next element
This form is similar to the For...Next loop but repeats the statements for each element
of a collection of objects or in an array. (This is an advanced feature as we will not
discuss objects in much detail in this introductory course). VB defines element as
naming the first element in the group, runs the statements, checks if element is last
one of the group. If it is not it defines element as the second in the group and executes
the statements on this element. This is repeated till all elements are processed. Note
that element is a Variant or Object variable. The example below examines all cells
in the current region of cell A1 and deletes its contents if the value is negative. Each
cell is an element of the group of cells.
For Each c In _
 Worksheets(1).Range(“A1”).CurrentRegion.Cells
 If c.Value < 0 Then c.Delete
Next c

Nesting
You can place one control structure within another. This is called nesting. The
example searches a specified range of cells, rangeToSearch, for the
searchValue and counts how many matches occur.
Function CountValues(rangeToSearch, searchValue)
 Dim counter As Integer
‘ check that quantity passed in variable rangeToSearch is
‘ indeed a range object
 If TypeName(rangeToSearch) <> “Range” Then
 MsgBox “You didn’t specify a range of cells”
 CountValues = -1
 Else
 For Each c In rangeToSearch.Cells
 If c.Value = searchValue Then
 counter = counter + 1
 End If
 Next c
 End If
 CountValues = counter
End Function
(Note this example distinguishes between 12 as a number and 12 as text).

 5

Exiting loops
Use Exit For and Exit Do to exit For and Do loops prematurely. There are, however,
better and more elegant ways to avoid portions of a macro, e.g.
i = LBound(searchArray)
ub = Ubound(searchArray)
foundIt = False
Do
 If search Array(i) = findThis Then foundIt = True
 i = i +1
 .
 other statements
 .
Loop While i <= ub And Not foundIt

