DYNAMICS

Dynamics: dynamics, which deals with the accelerated motion of a body. The subject

of dynamics will be presented in two parts: kinematics, which treats only the geometric
aspects of the motion, and kinetics, which is the analysis of the forces causing the motion. To
develop these principles, the dynamics of a particle will be discussed first, followed by topics
in rigid-body dynamics in two and then three dimensions.

kinematics of a particle

We will begin our study of dynamics by discussing the kinematics of a particle that moves
along a rectilinear or straight-line path. Recall that a particle has a mass but negligible size
and shape. Therefore we must limit application to those objects that have dimensions that are
of no consequence in the analysis of the motion. In most problems, we will be interested in
bodies of finite size, such as rockets, projectiles, or vehicles. Each of these objects can be
considered as a particle, as long as the motion is characterized by the motion of its mass
center and any rotation of the body is neglected.

Rectilinear Kinematics. The kinematics of a particle is characterized by specifying, at any
given instant, the particle’s position, velocity, and acceleration Position. The straight-line
path of a particle will be defined using a single coordinate axis s, Fig. a. The origin O on the
path is a fixed point, and from this point the position coordinate s is used to specify the
location of the particle at any given instant. The magnitude of s is the distance from O to the
particle, usually measured in meters (m) or feet (ft), and the sense of direction is defined by
the algebraic sign on s. Although the choice is arbitrary, in this case s is positive since the
coordinate axis is positive to the right of the origin. Likewise, it is negative if the particle is
located to the left of O. Realize that position is a vector quantity since it has both magnitude
and direction. Here, however, it is being represented by the algebraic scalar s, rather than in
boldface s, since the direction always remains along the coordinate axis.
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Displacement. The displacement of the particle is defined as the change in its position. For
example, if the particle moves from one point to another, Fig. b, the displacement is
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In this case As is positive since the particle’s final position is to the right of its initial position,
i.e., s' > s. Likewise, if the final position were to the left of its initial position, As would be
negative.

The displacement of a particle is also a vector quantity, and it should be distinguished from
the distance the particle travels. Specifically, the distance traveled is a positive scalar that
represents the total length of path over which the particle travels

Velocity. If the particle moves through a displacement As during the time interval At, the
average velocity of the particle during this time interval is

_As

If we take smaller and smaller values of t, the magnitude of s becomes smaller and smaller.

Consequently, the instantaneous velocity is a vector defined as v = Jjﬂ}(]{ As/At), or

ds

V= —

dt
Since t or dt is always positive, the sign used to v
define the sense of the velocity is the same as that ~ .
of s or ds. For example, if the particle is moving to g| e :
the right, Fig. c, the velocity is positive; whereas if }—i‘m‘ —|

it is moving to the left, the velocity is negative. The

magnitude of the velocity is known as the speed, Velocity

and it is generally expressed in units of m/s or ft/s.

Occasionally, the term “average speed” is used.

The average speed is always a positive scalar and is

defined as the total distance traveled by a particle, sT , divided by the elapsed time At; i.e.,
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St

{'vq } Vi —
sPlave T A



For example, the particle in Fig. d travels along the path of length st in time At, so its average
speed is (vsp)avg = St/At, but its average velocity iS vayg = -As/At
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Acceleration. Provided the velocity of the particle is known at two points, the average
acceleration of the particle during the time interval At is defined as

_Aw
e = 3y

Here Av represents the difference in the velocity during the time interval At, i.e., Av =v' - v,
Fig. e.

Acceleration

(e)

The instantaneous acceleration at time t is a vector that is found by taking smaller and smaller
values of At and corresponding smaller and smaller values of Av, so that

a = lim (Av/Af),or
Ar—0

dv
dt

ﬂ':

Substituting Eqg. 12-1 into this result, we can also write
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Both the average and instantaneous acceleration can be either positive or negative. In
particular, when the particle is slowing down, or its speed is decreasing, the particle is said to
be decelerating. In this case, v' in Fig. f is less than v, and so Av = v' - v will be negative.
Consequently, a will also be negative, and therefore it will act to the left, in the opposite
sense to v. Also, notice that if the particle is originally at rest, then it can have an acceleration
if a moment later it has a velocity v'; and, if the velocity is constant, then the acceleration is
zero since Av = v - v = 0. Units commonly used to express the magnitude of acceleration are
m/s? or ft/s?.
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Finally, an important differential relation involving the displacement, velocity, and
acceleration along the path may be obtained by eliminating the time differential dt between
Egs. 12-1 and 12-2. We have
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ads = vdv

Although we have now produced three important kinematic equations, realize that the above
equation is not independent of Egs. 12-1 and 12-2.

Constant Acceleration, a = a. . When the acceleration is constant, each of the three
kinematic equations a. = dv/dt, v = ds/dt ,and a; ds = v dv can be integrated to obtain
formulas that relate a. , v, S, and t.

Velocity as a Function of Time. Integrate a. = dv/dt, assuming that initially v = vo

when t = 0.
v ot
/d-v = ] a, dt
v 0

v = vy + a.t

(12-4)

Constant Acceleration




Position as a Function of Time. Integrate v = ds/dt = vo + act, assuming that initially s

=sgwhent=0.
v 5 I
/ ds = f{t‘[} + t?t.f:] dt
5 0

-
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Constant Acceleration

Velocity as a Function of Position. Either solve for t in Eq. 12-4 and substitute into
Eq. 12-5, or integrate v dv = a. ds, assuming that initially v =vpat s =sp.

¥h ]
j vdv = / a.ds
Uy Sy

P

vt = vf + 2a.(s — sp)

(12-6)

Constant Acceleration

The algebraic signs of sO, v0 , and ac, used in the above three equations,are determined from
the positive direction of the s axis as indicated by the arrow written at the left of each
equation. Remember that these equations are useful only when the acceleration is constant
and whent =0, s =Sy, v =vg . A typical example of constant accelerated motion occurs
when a body falls freely toward the earth. If air resistance is neglected and the distance of fall
is short, then the downward acceleration of the body when it is close to the earth is constant
and approximately 9.81 m/s® or 32.2 ft/s°.

Important Points

Dynamics is concerned with bodies that have accelerated motion.
1 Kinematics is a study of the geometry of the motion.

) Kinetics is a study of the forces that cause the motion.

) Rectilinear kinematics refers to straight-line motion.

) Speed refers to the magnitude of velocity.



1 Average speed is the total distance traveled divided by the total time. This is different from
the average velocity, which is the displacement divided by the time.

1 A particle that is slowing down is decelerating.
1 A particle can have an acceleration and yet have zero velocity.

1 The relationship a ds = v dv is derived from a = dv/dt and v = ds/dt, by eliminating dt.

. Procedure for Analysis

Coordinate System.
o Establish a position coordinate s along the path and specify its fixed origin and positive direction.
¢ Since motion is along a straight line, the vector quantities position, velocity, and acceleration can be

represented as algebraic scalars. For analytical work the sense of 5, v, and a is then defined by their
algebraic signs.

¢ The positive sense for each of these scalars can be indicated by an arrow shown alongside each kinematic
equation as it is applied.

Kinematic Equations.

¢ If a relation is known between any two of the four variables a, v, 5, and ¢, then a third variable can be

obtained by using one of the kinematic equations, a = dv/dt, v = ds/dt or ads = v dv, since each
equation relates all three variables.*

¢ Whenever integration is performed, it is important that the position and velocity be known at a given
instant in order to evaluate either the constant of integration if an indefinite integral is used, or the limits
of integration if a definite integral is used.

¢ Remember that Egs. 124 through 12-6 have only limited use. These equations apply only when the
acceleration is constant and the initial conditions are s = s;and v = vy whenf = 0.

*Some standard differentiation and integration formulas are given in Appendix A.



PROBLEMS

1- The car on the left in the photo and in Fig. moves in a straight line such that for a
short time its velocity is defined by v = (3t> + 2t) ft/s, where t is in seconds.
Determine its position and acceleration whent=3s. Whent =10, s =0.

SOLUTION

Coordinate System. The position coordinate extends from the fixed origin O to the car,
positive to the right.

Position. Since v = f(t), the car’s position can be determined from v = ds>dt, since this
equation relates v, s, and t. Noting that s = 0 when t = 0, we have*
as

(5) yza;zmﬁ+m)
5 I
/dsz f{3r2+2rjdr
1] 0
5 I
s| =£+F
0 ]
s=0 + 1

Whent = 3 s,
5§ = (3}'1 + (3}2 = 36 ft

Acceleration. Since v = f(t), the acceleration is determined from
a = dv/dt, since this equation relates a, v, and 1.

dv d
(5) EZE:EGIZ-I-ZI}
=6t + 2
Whent = 35,
a=6(3)+2=20ft/s">— Ans.

NOTE: The formulas for constant acceleration cannot be used to solve
this problem, because the acceleration is a function of time.
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A small projectile is fired vertically downward into a fluid medium with
an initial velocity of 60 m/s. Due to the drag resistance of the fluid the
projectile experiences a deceleration of a = (—0.4v°) m/s’, where v is in
m/s. Determine the projectile’s velocity and position 4 s after it is fired.

SOLUTION

Coordinate System. Since the motion is downward, the position
coordinate is positive downward, with origin located at O, Fig. 12-3.

Velocity. Here a = flv) and so we must determine the velocity as a
function of time using @ = dv/dt, since this equation relates v, a,and £.
(Why not use v = vy + at?) Separating the variables and integrating,
with vy = 60 m/s when t = 0, yields

(+) = ? = —040° Fig. 12-3

! v
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Here the positive root is taken, since the projectile will continue to
move downward. Whent = 45,

v = 0559 m/s) Ans.

v

Position. Knowing » = f(t), we can obtain the projectile’s position
from v = ds/dt, since this equation relates s, v, and t. Using the initial
condition s = 0, when t = 0, we have

ds 1 172
(+1) v=— [(60) 03:]
-1/2
/ fl—2+08t] dt
(60)
1/2(¢
08{(60)2 08!] :
1 [ 1 12
s——{l(m}z OSI] —ﬁ}m
Whent = 45,
s=443m Ans.
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Fig. 12-4

During a test a rocket travels upward at 75 m/s, and when it is 40 m
from the ground its engine fails. Determine the maximum height s,
reached by the rocket and its speed just before it hits the ground.
While in motion the rocket is subjected to a constant downward
acceleration of 9.81 m/s* due to gravity. Neglect the effect of air
resistance.

SOLUTION

Coordinate System. The origin O for the position coordinate s is
taken at ground level with positive upward, Fig. 12-4.

Maximum Height. Since the rocket is traveling upward,
v4 = +75m/swhent = 0. At the maximum height s = 55 the velocity
vg = 0. For the entire motion, the acceleration is a. = —9.81 m/s’
(negative since it acts in the opposite sense to positive velocity or
positive displacement). Since g, 1s constant the rocket’s position may
be related to its velocity at the two points A and B on the path by using
Eg. 12-6, namely,

+71) vp = v + 2a(sp — 54)
0= (75m/s)* + 2(—9.81 m/s%)(sz — 40 m)
sp = 32Tm Ans.

Velocity. To obtain the velocity of the rocket just before it hits the
ground, we can apply Eq. 12-6 between points B and C, Fig. 124.

(+1) ve = vp + 2a(sc — p)
=0 + 2(-9.81 m/s3(0 — 327 m)
ve = —80.1m/s = 80.1 m/s | Ans

The negative root was chosen since the rocket is moving downward.
Similarly, Eq. 12-6 may also be applied between points A and C, i.e.,

+71) ve = 4 + 2a(sc — s,)
= (75m/s)* + 2(-9.81 m/s*(0 — 40 m)
ve = —80.1m/s = 80.1m/s | Ans,

NOTE: It should be realized that the rocket is subjected to a deceleration
from A to B of 9.81 m/s% and then from B to C it is accelerated at this
rate. Furthermore, even though the rocket momentarily comes to rest
at B (vp = 0) the acceleration at B is still 9.81 m/s* downward!
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A metallic particle is subjected to the influence of a magnetic field as
it travels downward through a fluid that extends from plate A to
plate B, Fig. 12-5.1f the particle is released from rest at the midpoint C,
s = 100mm, and the acceleration is a = (4s) m/s%, where s is in
meters, determine the velocity of the particle when it reaches plate B,
§ = 200 mm, and the time it takes to travel from C to B.

SOLUTION

Coordinate System. As shown in Fig, 12-5, s is positive downward,
measured from plate A.

Velocity. Since a = f(s). the velocity as a function of position can
be obtained by using v dv = a ds. Realizing that v = 0 at s = 0.1 m,
we have

mm

200 me

(+1) vdv = ads
v 5
j'ud'u = 4s ds
0 0lm
1,7 4,[
—| ==¢
0 2 loim

v =2(s* - 0.01)" m/s
Ats =200mm = 0.2 m,

vg = 0.346 m/s = 346 mm/s | Ans.

The positive root is chosen since the particle is traveling downward,
i.e.,in the +s direction.

Time. The time for the particle to travel from C to B can be obtained
using v = ds/dt and Eq. 1, where s = 0.1 m when r = 0. From
Appendix A,

(+1) ds = vdt
= 2s* - 0.01)" 24t
5 dS t
————= [ 24t
/0.1 (" — 001" /u
5 t
In(Vs* =001 +5)| =2
0.1 0
In(Vs* = 001 +5) + 2303 = 2
Ats =02m,
In(V(02)* - 0.01 + 02) + 2.303
t= - =0.658s  Ans.

NOTE: The formulas for constant acceleration cannot be used here
because the acceleration changes with position, i.e.,a = 4s.

10




§=—-40m §=6125m

I—Q—0
| A ' o
t=2s t=0s =355
(a)
1 (m/s)
v =3¢ - 6f
[(s)
(0,0) (25,0)
(1s,-3mfs)
(b)
Fig. 12-6

A particle moves along a horizontal path with a velocity of
v = (3 — 6f)m/s, where ¢ is the time in seconds. If it is initially
located at the origin O, determine the distance traveled in 3.5 5, and the
particle’s average velocity and average speed during the time interval.

SOLUTION

Coordinate System. Here positive motion is to the right, measured
from the origin O, Fig. 12-6a.

Distance Traveled. Since v = f(t), the position as a function of time
may be found by integrating v = ds/dt witht = 0,5 = 0.

(=) ds = vdt
= (3> — 6f) dt
[dsz /(39—60{#
0 0
s=(F -3")m (1)

In order to determine the distance traveled in 3.5 s, it is necessary
to investigate the path of motion. If we consider a graph of the
velocity function, Fig. 12-6b, then it reveals that for 0 < t < 25 the
velocity is negative, which means the particle is traveling to the left,
and for 1 > 2 s the velocity is positive, and hence the particle is
traveling to the right. Also, note that v = 0 at t = 2 s. The particle’s
position when t = 0, = 25, and f = 3.5 s can be determined from
Eq. 1. This yields

Slico=0 s|,.p,=—40m s|,_35,=6.125m
The path is shown in Fig. 12-6a. Hence, the distance traveled in 3.5 s is
sp =40+ 40+ 6125 =14125m = 141 m Ans.

Velocity. The displacement fromt = 0tot = 35sis
As = §|i=35s — S|i=0=6125m - 0 =6.125m
and so the average velocity is
- As _ 6125m
At 3550

The average speed is defined in terms of the distance traveled s;. This
positive scalar is

=175m/s— Ans.

st _ 14125m
At 3550

NOTE: In this problem, the accelerationisa = dv/dt = (6t — 6) m/s?,
which is not constant.

('Usp).wg = =4.04 m/{s Ans.

11



Rectilinear Kinematics: Erratic Motion

When a particle has erratic or changing motion then its position, velocity, and acceleration
cannot be described by a single continuous mathematical function along the entire path.
Instead, a series of functions will be required to specify the motion at different intervals. For
this reason, it is convenient to represent the motion as a graph. If a graph of the motion that
relates any two of the variables s,u, a, t can be drawn, then this graph can be used to
construct subsequent graphs relating two other variables since the variables are related by
the differential relationships v = ds/dt, a = dv/dt, or a ds = v dv. Several situations occur

frequently.
5
. _ds . — a8
Y ="drlt=0 b}— dr |t
{
l'i\J — [f_l";‘ ||.l L: — ﬁ
[t TR 37 di |ty
- l #_-W"‘-..,_ -
7
53
i
'rf 'r.'-
(a)

The s-t, v—t, and a-t Graphs. To construct the v-t graph given the s—t graph, Fig. a, the
equation v = ds/dt should be used, since it relates the variables s and t to v. This equation
states that

ds

22—

dt
Sl velocity
s—t graph -

For example, by measuring the slope on the s—t graph when t = t;, the velocity is v, which is
plotted in Fig. b. The v/t graph can be constructed by plotting this and other values at each
instant.




The a—t graph can be constructed from the v/t graph in a similar manner, Fig. a, since

v
i1 :@| e =@
Vodt|r=0 " di| ;
| _anw
| a zd—"”| | iy = _| .
I / ! dt |/ |"/ dt |13
; —
3
Vs
i
o t 53 t !

Examples of various measurements are shown in Fig. a and plotted in Fig. b.

curve).

a

iy = 0

dv

dt
slope of
v—t graph

acceleration

(b)
If the s—t curve for each interval of motion can be expressed by amathematical function s =
s(t), then the equation of the v9t graph for the same interval can be obtained by
differentiating this function with respect to time since v = ds/dt. Likewise, the equation of
the a—t graph for the same interval can be determined by differentiating v = v(t) since a =
dv/dt. Since differentiation reduces a polynomial of degree n to that of degree n — 1, then if
the s—t graph is parabolic (a second-degree curve), the v/t graph will be a sloping line (a
first-degree curve), and the a—t graph will be a constant or a horizontal line (a zero-degree

If the a—t graph is given, Fig.a, the v-t graph may be constructed using a = dv/dt, written as

Av

change in
velocity

/ndr

area under
a—t graph

13




Hence, to construct the v-t graph, we begin with
the particle’s initial velocity vo and then add to this
small increments of area (v) determined from the
a—t graph. In this manner successive points, u; = ug
+ Av, etc., for the v-t graph are determined, Fig. b.
Notice that an algebraic addition of the area
increments of the a—t graph is necessary, since

areas lying above the t axis correspond to an
increase in v (“positive” area), whereas those lying

iy

|'r|
—Av=| adt
;0

| (a)

below the axis indicate a decrease in v (“negative”

area).
Similarly, if the v-t graph is given, Fig. al, it is

possible to determine the s—t graph using v = ds/dt,

written as
As = / v dt
. __area under r‘]
displacement
v—t graph (b)

If segments of the a—t graph can be described
by a series of equations, then each of these
equations can be integrated to yield equations
describing the corresponding segments of the
v-t graph. In a similar manner, the s—t graph can
be obtained by integrating the equations which
describe the segments of the v-t graph. As a
result, if the a—t graph is linear (a first-degree
curve), integration will yield a v-t graph that is
parabolic (a second-degree curve) and an s—t
graph that is cubic (third-degree curve).

14
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The v—s and a—s Graphs. If the a—s graph can be constructed, then points on the v-s
graph can be determined by using u du = a ds. Integrating this equation between the limits v

=ygats=spand v =vulats=s;, we have,

L
1,2 2y —
FHvr — vp) = / ads
&l

area under
a—s graph

Therefore, if the red area in Fig. 12—11a is determined, and the initial velocity vo at sp = 0 is

knOWI’\, then vy = (zj;lslﬂl s + 3_;?}}]-".2_. , Fig b. SUCCESSIVE pOIntS on the V=S

graph can be constructed in this manner.

If the v—s graph is known, the acceleration a at any position s can be determined using a ds =

v dv, written as

(2
ds

velocity times
acceleration = slope of
v—s graph

Thus, at any point (s, v) in Fig. a, the slope dv>ds of the v—s
graph is measured. Then with v and dv>ds known, the value of
a can be calculated, Fig. b.

The v—s graph can also be constructed from the a—s graph, or
vice versa, by approximating the known graph in various
intervals with mathematical functions, v = f(s) or a = g(s), and
then using a ds = v dv to obtain the other graph.

15
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EXAMPLE [f2i6

A bicycle moves along a straight road such that its position is described
by the graph shown in Fig. 12-13a. Construct the v-f and a-t graphs
for0 =t = 30s.

5 (ft)

. &

§=20f-100

s=t
100 —|——

10 30 ‘e
()
SOLUTION
v-t Graph. Since v = ds/dt, the v—t graph can be determined by
differentiating the equations defining the s—f graph, Fig. 12-13a. We have

v (ft/s)

ds
0=t<10s s = v=—= Qs 20—

d
10s <t =30s; § = (20t — 100) ft vZEjZZOft/s
The results are plotted in Fig. 12-13h. We can also obtain specific 10 30
values of v by measuring the slope of the s—f graph at a given instant.
For example, at t = 20 s, the slope of the s—t graph is determined from (b)

the straight line from 10 s to 30 s, 1.e.,

_As _500ft — 1001t
At 30s—10s

1(s)

t=120s; v =201t/s

2
a-t Graph. Since a = dv/dt, the a—t graph can be determined by a(ftfs)

differentiating the equations defining the lines of the v-t graph.
This yields

d
0=t<10s; v=@fts a==

— =121t/
a 20
dv
10<t=30s; v =20ft/s aZEZD

The results are plotted in Fig. 12-13c. 10 30

NOTE: Show that @ = 2 ft/s* when t = 5 s by measuring the slope of (c)
the v-t graph.

16



EXAMPLE

a(m/s?)

10

10 A, |

(a)

v (m/s)
v =10¢

v=-2{+120

()

0s<t=t;a= (—Z)m/sz;/

=L (s)

10 =60

(b)

§(m)

3000

§=5¢

500 ——
5= —1 + 120 — 600

10
(©)
Fig. 12-14

The car in Fig. 12-14a starts from rest and travels along a straight track
such that it accelerates at 10 m/s* for 10 s, and then decelerates at
2 m/s*. Draw the v and s~ graphs and determine the time ¢’ needed
to stop the car. How far has the car traveled?

SOLUTION

v-t Graph. Since dv = adt, the v-t graph is determined by
integrating the straight-line segments of the a— graph. Using the initial
condition v = 0 when t = 0, we have

v !
0=1t<10s; a=(l{])m/52; /dv= /l[)dr, v = 10t
0 0

When ¢ =10s, v = 10(10) = 100m/s. Using this as the initial
condition for the next time period, we have
v t

dv = / —2dt,v = (-2t + 120) m/s
100 m/s 10s

When t = t' we require v = 0. This yields, Fig. 12-14b,
' =60s Ans.

A more direct solution for ' is possible by realizing that the area
under the a—f graph is equal to the change in the car’s velocity. We
require Av = 0 = A, + A,, Fig. 12-14a. Thus
0 =10m/s(10s) + (-2 m/s%)(t" — 105)
t"=60s Ans.

s-t Graph. Since ds = vdt, integrating the equations of the
v—t graph yields the corresponding equations of the s— graph. Using
the initial condition s = 0 when t = 0, we have

5 t
0=r=10s; v = (10f)m/s; /ds = /IOIdf, s=(5*)m
0 0

Whent = 10s, s = 5(10) = 500 m. Using this initial condition,

5 f

10s=t=60s;v= (—2:—120)m/s;/ ds = (=2t +120) dt

0 [(s)

500 m 105
s — 500 = —£ + 120t — [—(10)* + 120(10)]
s = (= + 120t — 600) m
When t' = 60 s, the position is
s = —(60)* + 120(60) — 600 = 3000 m Ans.
The s~ graph is shown in Fig. 12-14c.
NOTE: A direct solution for s is possible when t' = 60 s, since the

triangular area under the v-t graph would yield the displacement
As=5—0fromt=0tot = 60s. Hence,

As = 360 5)(100 m/s) = 3000 m Ans.

17



XAMP

The v—s graph describing the motion of a motorcycle is shown in
Fig. 12-15a. Construct the a-s graph of the motion and determine the
time needed for the motorcycle to reach the position s = 400 ft.

SOLUTION

a-s Graph. Since the equations for segments of the v—s graph are
given, the a—s graph can be determined using a ds = v dv.

0 =s < 200ft v =(02s + 10) ft/s
dv d
a=v—=(02s + 10)—(0.25s + 10) = 0.04s + 2
ds ds
200 ft < 5 = 400 ft; v =501t/s
dv d
a=v—=(50)—(B0)=10
s ( )ds( )
The results are plotted in Fig. 12-15b.

Time. The time can be obtained using the v—s graph and v = ds/d!,
because this equation relates v, s, and . For the first segment of
motion, s = O whent = 0, so

ds ds

=5 < - = (025 + ; T 02+ 10
0=s5<200ft v=(025+ 10)ft/s a= =m0

f 3 d
Jo= Joww
t=1(5In(02s + 10) = 5In10) s

At s =200 ft, t = 51n[0.2(200) + 10] — 51In 10 = 8.05 s. Therefore,
using these initial conditions for the second segment of motion,
ds ds

200 ft < s = 400 ft; v = 501ft/s; dt = —
v 50

t 5
d.
j dt = / —S;
8.05s ZDDmSO

[ — 805 = — — 4 r:(i+4.05)s
50 50
Therefore, at s = 400 ft,

t—400+4{]5—120 Ans.
=30 05=120s 1.

NOTE: The graphical results can be checked in part by calculating slopes.
For example, at s = 0, a = v(dv/ds) = 10(50 — 10)/200 = 2 m/s”.
Also, the results can be checked in part by inspection. The v—s graph
indicates the initial increase in velocity (acceleration) followed by
constant velocity (a = 0).
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