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DYNAMICS 

Dynamics: dynamics, which deals with the accelerated motion of a body. The subject 

of dynamics will be presented in two parts: kinematics, which treats only the geometric 

aspects of the motion, and kinetics, which is the analysis of the forces causing the motion. To 

develop these principles, the dynamics of a particle will be discussed first, followed by topics 

in rigid-body dynamics in two and then three dimensions. 

 

kinematics of a particle 

We will begin our study of dynamics by discussing the kinematics of a particle that moves 

along a rectilinear or straight-line path. Recall that a particle has a mass but negligible size 

and shape. Therefore we must limit application to those objects that have dimensions that are 

of no consequence in the analysis of the motion. In most problems, we will be interested in 

bodies of finite size, such as rockets, projectiles, or vehicles. Each of these objects can be 

considered as a particle, as long as the motion is characterized by the motion of its mass 

center and any rotation of the body is neglected. 

Rectilinear Kinematics. The kinematics of a particle is characterized by specifying, at any 

given instant, the particle’s position, velocity, and acceleration Position. The straight-line 

path of a particle will be defined using a single coordinate axis s, Fig. a. The origin O on the 

path is a fixed point, and from this point the position coordinate s is used to specify the 

location of the particle at any given instant. The magnitude of s is the distance from O to the 

particle, usually measured in meters (m) or feet (ft), and the sense of direction is defined by 

the algebraic sign on s. Although the choice is arbitrary, in this case s is positive since the 

coordinate axis is positive to the right of the origin. Likewise, it is negative if the particle is 

located to the left of O. Realize that position is a vector quantity since it has both magnitude 

and direction. Here, however, it is being represented by the algebraic scalar s, rather than in 

boldface s,  since the direction always remains along the coordinate axis. 

 

 

 

 

 

Displacement. The displacement of the particle is defined as the change in its position. For 

example, if the particle moves from one point to another, Fig. b, the displacement is 

∆s = s' – s 
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In this case ∆s is positive since the particle’s final position is to the right of its initial position, 

i.e., s' > s. Likewise, if the final position were to the left of its initial position, ∆s would be 

negative. 

The displacement of a particle is also a vector quantity, and it should be distinguished from 

the distance the particle travels. Specifically, the distance traveled is a positive scalar that 

represents the total length of path over which the particle travels 

Velocity. If the particle moves through a displacement ∆s during the time interval ∆t, the 

average velocity of the particle during this time interval is 

 

 

 

If we take smaller and smaller values of t, the magnitude of s becomes smaller and smaller. 

Consequently, the instantaneous velocity is a vector defined as  

 

 

 

Since t or dt is always positive, the sign used to 

define the sense of the velocity is the same as that 

of s or ds. For example, if the particle is moving to 

the right, Fig. c, the velocity is positive; whereas if 

it is moving to the left, the velocity is negative. The 

magnitude of the velocity is known as the speed, 

and it is generally expressed in units of m/s or ft/s. 

Occasionally, the term “average speed” is used. 

The average speed is always a positive scalar and is 

defined as the total distance traveled by a particle, sT , divided by the elapsed time ∆t; i.e., 
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For example, the particle in Fig. d travels along the path of length sT in time ∆t, so its average 

speed is (υsp)avg = ST/∆t, but its average velocity is υavg = -∆s/∆t 

 

 

 

 

 

 

Acceleration. Provided the velocity of the particle is known at two points, the average 

acceleration of the particle during the time interval ∆t is defined as 

 

 

Here ∆υ represents the difference in the velocity during the time interval ∆t, i.e., ∆υ = υ' - υ, 

Fig. e. 

 

 

 

 

 

 

The instantaneous acceleration at time t is a vector that is found by taking smaller and smaller 

values of ∆t and corresponding smaller and smaller values of ∆υ, so that  

 

  

 

 

Substituting Eq. 12–1 into this result, we can also write 
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Both the average and instantaneous acceleration can be either positive or negative. In 

particular, when the particle is slowing down, or its speed is decreasing, the particle is said to 

be decelerating. In this case, υ' in Fig. f is less than υ, and so ∆υ = υ' - υ will be negative. 

Consequently, a will also be negative, and therefore it will act to the left, in the opposite 

sense to υ. Also, notice that if the particle is originally at rest, then it can have an acceleration 

if a moment later it has a velocity v'; and, if the velocity is constant, then the acceleration is 

zero since ∆υ = υ - υ = 0. Units commonly used to express the magnitude of acceleration are 

m/s
2
 or ft/s

2
. 

 

 

 

 

 

 

Finally, an important differential relation involving the displacement, velocity, and 

acceleration along the path may be obtained by eliminating the time differential dt between 

Eqs. 12–1 and 12–2. We have 

 

 

 

Although we have now produced three important kinematic equations, realize that the above 

equation is not independent of Eqs. 12–1 and 12–2. 

Constant Acceleration, a = ac . When the acceleration is constant, each of the three 

kinematic equations ac = dv/dt, υ = ds/dt ,and ac ds = υ dυ can be integrated to obtain 

formulas that relate ac , υ, s, and t. 

Velocity as a Function of Time. Integrate ac = dv/dt, assuming that initially υ = υ0 

when t = 0. 
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Position as a Function of Time. Integrate υ = ds/dt = υ0 + act, assuming that initially s 

= s0 when t = 0. 

 

 

 

 

 

Velocity as a Function of Position. Either solve for t in Eq. 12–4 and substitute into 

Eq. 12–5, or integrate υ dυ = ac ds, assuming that initially υ = υ0 at s = s0 . 

 

 

 

 

 

 

The algebraic signs of s0 , v0 , and ac , used in the above three equations,are determined from 

the positive direction of the s axis as indicated by the arrow written at the left of each 

equation. Remember that these equations are useful only when the acceleration is constant 

and when t = 0, s = s0 , υ = υ0 . A typical example of constant accelerated motion occurs 

when a body falls freely toward the earth. If air resistance is neglected and the distance of fall 

is short, then the downward acceleration of the body when it is close to the earth is constant 

and approximately 9.81 m/s
2
 or 32.2 ft/s

2
.  

 

Important Points 

Dynamics is concerned with bodies that have accelerated motion. 

� Kinematics is a study of the geometry of the motion. 

� Kinetics is a study of the forces that cause the motion. 

� Rectilinear kinematics refers to straight-line motion. 

� Speed refers to the magnitude of velocity. 
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� Average speed is the total distance traveled divided by the total time. This is different from 

the average velocity, which is the displacement divided by the time. 

� A particle that is slowing down is decelerating. 

� A particle can have an acceleration and yet have zero velocity. 

� The relationship a ds = υ dυ is derived from a = dυ/dt and υ = ds/dt, by eliminating dt. 
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PROBLEMS 

1- The car on the left in the photo and in Fig. moves in a straight line such that for a 

short time its velocity is defined by v = (3t
2
 + 2t) ft/s, where t is in seconds. 

Determine its position and acceleration when t = 3 s. When t = 0, s = 0. 

 

 

 

 

 

SOLUTION 

Coordinate System. The position coordinate extends from the fixed origin O to the car, 

positive to the right.  

Position. Since v = f(t), the car’s position can be determined from v = ds>dt, since this 

equation relates υ, s, and t. Noting that s = 0 when t = 0, we have* 
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Rectilinear Kinematics: Erratic Motion 

When a particle has erratic or changing motion then its position, velocity, and acceleration 

cannot be described by a single continuous mathematical function along the entire path. 

Instead, a series of functions will be required to specify the motion at different intervals. For 

this reason, it is convenient to represent the motion as a graph. If a graph of the motion that 

relates any two of the variables s,υ, a, t can be drawn, then this graph can be used to 

construct subsequent graphs relating two other variables since the variables are related by 

the differential relationships υ = ds/dt, a = dv/dt, or a ds = v dv. Several situations occur 

frequently. 

 

 

 

 

 

 

 

The s–t, v–t, and a–t Graphs. To construct the v-t graph given the s–t graph, Fig. a, the 

equation υ = ds/dt should be used, since it relates the variables s and t to v. This equation 

states that 

 

 

 

 

For example, by measuring the slope on the s–t graph when t = t1, the velocity is v1, which is 

plotted in Fig. b. The v/t graph can be constructed by plotting this and other values at each 

instant. 
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The a–t graph can be constructed from the v/t graph in a similar manner, Fig. a, since 

 

 

 

 

 

 

 

 

Examples of various measurements are shown in Fig. a and plotted in Fig. b. 

 

 

 

 

 

If the s–t curve for each interval of motion can be expressed by  amathematical function s = 

s(t), then the equation of the v9t graph for the same interval can be obtained by 

differentiating this function with respect to time since v = ds/dt. Likewise, the equation of 

the a–t graph for the same interval can be determined by differentiating v = v(t) since a = 

dv/dt. Since differentiation reduces a polynomial of degree n to that of degree n – 1, then if 

the s–t graph is parabolic (a second-degree curve), the v/t graph will be a sloping line (a 

first-degree curve), and the a–t graph will be a constant or a horizontal line (a zero-degree 

curve). 

If the a–t graph is given, Fig.a, the v-t graph may be constructed using a = dv/dt, written as 
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Hence, to construct the v-t graph, we begin with 

the particle’s initial velocity v0 and then add to this 

small increments of area (v) determined from the 

a–t graph. In this manner successive points, υ1 = υ0 

+ ∆υ, etc., for the v-t graph are determined, Fig. b. 

Notice that an algebraic addition of the area 

increments of the a–t graph is necessary, since 

areas lying above the t axis correspond to an 

increase in v (“positive” area), whereas those lying 

below the axis indicate a decrease in v (“negative” 

area). 

Similarly, if the v-t graph is given, Fig. a1, it is 

possible to determine the s–t graph using v = ds/dt, 

written as 

 

 

 

 

If segments of the a–t graph can be described 

by a series of equations, then each of these 

equations can be integrated to yield equations 

describing the corresponding segments of the 

v-t graph. In a similar manner, the s–t graph can 

be obtained by integrating the equations which 

describe the segments of the v-t graph. As a 

result, if the a–t graph is linear (a first-degree 

curve), integration will yield a v-t graph that is 

parabolic (a second-degree curve) and an s–t 

graph that is cubic (third-degree curve). 
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The v–s and a–s Graphs. If the a–s graph can be constructed, then points on the v-s 

graph can be determined by using υ dυ = a ds. Integrating this equation between the limits υ 

= υ0 at s = s0 and υ = υ1 at s = s1 , we have, 

 

 

 

 

Therefore, if the red area in Fig. 12–11a is determined, and the initial velocity v0 at s0 = 0 is 

known, , Fig. b. Successive points on the v–s 

graph can be constructed in this manner. 

If the v–s graph is known, the acceleration a at any position s can be determined using a ds = 

v dv, written as 

 

 

 

 

 

 

Thus, at any point (s, v) in Fig. a, the slope dv>ds of the v–s 

graph is measured. Then with v and dv>ds known, the value of 

a can be calculated,  Fig. b. 

The v–s graph can also be constructed from the a–s graph, or 

vice versa, by approximating the known graph in various 

intervals with mathematical functions, v = f(s) or a = g(s), and 

then using a ds = v dv to obtain the other graph. 
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