Basic Freeways and Multilane Highways (LOS)

Uninterrupted Flow Facilities

- > Pure uninterrupted facilities occurs on freeways
- It can also exist on some surface facilities Long stretch of rural/suburban areas between points of fixed interruption
- Example: Surface facility more than 2 miles from the nearest point of fixed interruption can be called as uninterrupted.

Primary Types of Uninterrupted Flow Facilities

Freeways

- Pure uninterrupted flow
- Multilane Highways

- Sections of multilane highways (four or six lane) that are more than two miles from the nearest point of fixed operation

Rural Two-lane Highways

- Sections of two-lane highways (one lane in each direction) that are more than two miles from the nearest point of fixed operation

Capacity

The capacity of a facility is the maximum hourly rate at which persons or vehicles reasonably can be expected to traverse a point or a uniform section of a lane or roadway during a given time period under prevailing roadway, traffic, and control conditions. (HCM 2000).

Traffic Engineering Lecture 14

Capacity Under Ideal Conditions

Type of Facility	Free-Flow Speed (mi/h)	Capacity
Freeways	≥70	2,400 pc/h/ln
	65	2,350 pc/h/ln
	60	2,300 pc/h/ln
	55	2,250 pc/h/ln
Multilane	≥60	2,200 pc/h/ln
Highways	55	2,100 pc/h/ln
	50	2,000 pc/h/ln
	50	1,900 pc/h/ln
Two-Lane	All	3,200 pc/h
Highways		(total, both dir) 1,700 pc/h (max, one dir)

Types of Capacity (HCM 1950)

- Basic Capacity
 - Maximum number of passenger cars that can pass a given point on a lane or roadway during one hour under the most nearly ideal roadway and traffic conditions which can possibly be attained
- Possible Capacity
- Practical Capacity

Service Flow Rate

A service flow rate is defined as the maximum flow rate of flow that can be reasonably expected on a lane or roadway under prevailing roadway, traffic, and control conditions while maintaining a particular level of service.

Service Flow Rate Illustration

Service Volume

Service volume is described as conditions that existed over a full hour as opposed to the standard 15 minute period.

$SV_i = SF_i * PHF$

- SV_i: Service volume for LOS i (veh/hr)
- SF_i: Servce flow rate for LOS i (veh/hr)
- PHF: Peak hour factor

The Level of Service Concept

- 4 A quality measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience (HCM 2010).
- **4** Rating scale A-F indicate best to worst operation.

Measures of Effectiveness for LOS

Type of Facility	Measure of Effectiveness
Freeways (Basic, Weaving, Ramp)	Density (pc/mi/ln)
Multilane Highway	Density (pc/mi/ln)
Two-Lane Highway	Avg. Travel Speed (mph); % time spent following
Signalized Intersections	Control Delay (s/veh)
Unsignalized Intersections	Control Delay (s/veh)
Urban Streets	Average Travel Speed (mph)
	Type of Facility Freeways (Basic, Weaving, Ramp) Multilane Highway Two-Lane Highway Signalized Intersections Unsignalized Intersections Urban Streets

Prof. Dr. Zainab Alkaissi

Traffic Engineering *Lecture* 14

(e) A Multilane Highway w/TWLTL

(f) An Undivided Multilane Rural Highway

Figure: Typical Freeway and Multilane Highway Alignments (Sources: Photo (a) courtesy of J. Ulerio; (b),(c),(d),(f) Used with permission of Transportation Research Board, National Research Council, "Highway Capacity Manual," Special Report 209, 1994, Illustrations 7-1 through 7-4, p. 7-3; (e) Used with permission of Transportation Research Board, National Research Council, Highway Capacity Manual, December 2000.

Prof. Dr. Zainab Alkaissi

Traffic Engineering Lecture 14

Basic Freeway and Multilane Highway Characteristics

- Speed-Flow Characteristics
 - No heavy vehicles in traffic stream
 - A driver population dominated by regular or familiar users of the facility
- ✤ Level of Service Characteristics
 - LOS-A through F (see next slide)

LOS A

LOS C

LOS E

LOS B

LOS D

LOS F

LOS Estimation: Freeways

FFS (mi/h)	Break-Point (pc/h/ln)	Flow Rate Range $\geq 0 \leq \text{Break-Point}$	>Break-Point ≤ Capacity
75	1,000	75	$75 - 0.00001107 (v_p - 1.000)^2$
70	1,200	70	$70 - 0.00001160 (v_n - 1.200)^2$
65	1,400	65	$65 - 0.00001418 (v_n - 1.400)^2$
60	1,600	60	$60 - 0.00001816 (v_n - 1.600)^2$
55	1,800	55	$55 - 0.00002469 (v_p - 1.800)^2$

Equations for LOS Estimation-Freeways

Notes:

1. FFS =free-flow speed.

2. Maximum flow rate for the equations is capacity: 2,400 pc/h/ln for 70- and 75-mph FFS; 2,350 pc/h/ln for 65-mph FFS; 2,300 pc/h/ln for 60-mph FFS; and 2,250 pc/h/ln for 55-mph FFS.

(Source: Basic Freeway Segments, Draft Chapter 11, NCHRP Project 3-92, Production of the 2010 Highway Capacity Manual, Kittelson and Associates, Portland OR, 2009, Exhibit 11-3, p. 11-4.)

LOS Estimation: Multilane Highways

Equations for LOS Estimation: Multilane Highways

FFS (mi/h)	For v ≤ 1,400 pc/h/ln S (mi/h)	For v > 1,400 pc/h/ln S (mi/h)
60	S = 60	$S = 60 - \left[5.00 \left(\frac{v_p - 1,400}{800} \right)^{1.31} \right]$
55	S = 55	$S = 55 - \left[3.78 \left(\frac{v_p - 1,400}{700}\right)^{1.31}\right]$
50	S = 50	$S = 50 - \left[3.49 \left(\frac{v_p - 1,400}{600}\right)^{1.31}\right]$
45	S = 45	$S = 45 - \left[2.78 \left(\frac{v_p - 1,400}{500}\right)^{1.31}\right]$

Equations for Curves

LOS Criteria

Level of Service	Density Range for Basic Freeway Sections (pc/mi/ln)	Density Range for Multilane Highways (pc/mi/ln)
А	$\geq 0 \leq 11$	$\geq 0 \leq 11$
В	$> 11 \le 18$	$> 11 \le 18$
С	$> 18 \leq 26$	$> 18 \le 26$
D	$> 26 \le 35$	$> 26 \le 35$
Е	$> 35 \le 45$	$>$ 35 \leq (40–45) depending on FFS
F	Demand Exceeds	Demand Exceeds Capacity
	Capacity > 45	> (40–45) depending on FFS

FFS		Level of Service				
(mi/h)	Α	B	С	D	E	
75	820	1,310	1,750	2,110	2,400	
70	770	1,250	1,690	2,080	2,400	
65	710	1,170	1,630	2,030	2,350	
60	660	1,080	1,560	2,010	2,300	
55	600	990	1,430	1,900	2,250	

Maximum Service Flow Rate: Basic Freeway Sections

Note: All values rounded to the nearest 10 pc/h/ln.

FFS	Level of Service				
(mi/h)	A	B	С	D	E
60	660	1,080	1,550	1,980	2,200
55	600	990	1,430	1,850	2,100
50	550	900	1,300	1,710	2,000
45	490	810	1,170	1,550	1,900

Maximum Service Flow Rate: Multilane Highways

Note: All values rounded to the nearest 10 pc/h/ln.

Factors Influencing LOS

- ✤ Volume
- ✤ Lane width
- Lateral obstructions
- Traffic composition
- Grade
- Speed

Types of Analysis

- Operational Analysis
- Service Flow Rate and Service Volume Analysis
- Design Analysis

Operational Analysis

Flow Rate:

$$\mathbf{v}_{\mathbf{p}} = \frac{\mathbf{V}}{\mathbf{PHF} * \mathbf{N} * \mathbf{f}_{\mathbf{HV}} * \mathbf{f}_{\mathbf{p}}}$$

- ✓ $v_p = 15$ -minute passenger-car equivalent flow rate (pc/h/ln)
- \checkmark V = hourly volume in the given direction of flow (vph) PHF = peak-hour factor
- \checkmark N = number of lanes in the given direction of flow
- ✓ f_{HV} = an adjustment factor for th presence of "heavy" vehicles
- ✓ f_p = an adjustment factor to account for the fact that all drivers of the facility may not be commuters or regular users. *Basis for analysis is peak 15 min flow rate.

Prof. Dr. Zainab Alkaissi

Traffic Engineering Lecture 14

Example: Graphical Solution

Service Flow Rate and Service Volume Analysis

 $SV_i = MSF_i * PHF * N * f_{HV} * f_p$

- ✓ SV_i = service volume over a full peak hour for LOS "i", veh/h
- ✓ MSF_i = maximum service flow rate for level of service "i", pc/h/ln
- \checkmark *Remove PHF to get SF.

Design Analysis

$$N_i = \frac{DDHV}{MSF_i * PHF * f_{HV} * f_r}$$

Where:

- ✓ N_i = number of lanes required (in one direction) to provide LOS "i"
- ✓ DDHV = directional design hour volume, veh/h

Basic Freeway Segment Characteristics

Ideal conditions for maximum service flow rate:

- 4 Minimum interchange spacing 2 miles
- Only passenger cars
- \blacksquare Lane widths ≥ 12 feet
- \downarrow Lateral obstructions ≥ 6 ft from roadway edge
- ↓ Level terrain (grades < 2%)
- Drivers typical of weekday (regular) traffic
- 4 10 or more lanes in urban areas **removed in HCM2010

Free Flow Speed: Basic Freeway Segments

$FFS = 75.4 - f_{LW} - f_{LC} - 3.22TRD^{0.84}$

- ✓ FFS = estimated free flow speed in mph. *HCM2010
- ✓ BFFS = estimated base free flow speed in mph (75 mph for rural freeways, 70 mph for urban based on HCM recommendations).
- ✓ f_{LW} = adjustment for lane width (if less than 12 ft), mph.
- ✓ f_{LC} = adjustment for right side lateral clearance (if less than 6 ft), mph.
- ✓ f_N = adjustment for # of lanes (if less than 5 in one direction), mph.
- ✓ f_{ID} = adjustment for interchange density if < 2 mi, mph.
- ✓ TRD = total ramp density (ramps/mi)

Adjustment for Lane Width: Freeway

Lane Width (ft)	Reduction in Free-Flow Speed, f _{LW} (mi/h)
≥12	0.0
11	1.9
10	6.6

(*Source:* Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, December 2000, Exhibit 23-4, p. 23-6.)

Adjustment for Lateral Clearance : Freeway

Right Shoulder	Reduction in Free-Flow Spee f _{LC} (mi/h)				
Lateral Clearance	Lanes in One Direction				
(ft)	2	3	4	≥5	
≥6	0.0	0.0	0.0	0.0	
5	0.6	0.4	0.2	0.1	
4	1.2	0.8	0.4	0.2	
3	1.8	1.2	0.6	0.3	
2	2.4	1.6	0.8	0.4	
1	2.0	2.0	1.0	0.5	
0	3.6	2.4	1.2	0.6	

(Source: Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, December 2000, Exhibit 23-5, p. 23-6.)

Total Ramp Density

- Total number of on-ramps and off-ramps within ± 3 miles of the mid-point of the study segment divided by 6 miles.
- Ramp density is a surrogate measure that relates to the intensity of land use activity in the vicinity of study segment.

Multilane Highway Characteristics

Ideal conditions for maximum service flow rate:

- > Lane widths \geq 12 feet
- > Total lateral clearance ≥ 12 feet
- Divided highway
- > No access points
- > Only passenger cars in traffic stream
- Regular roadway users

Free Flow Speed: Multilane Highways

$FFS = BFFS - f_{LW} - f_{LC} - f_M - f_A$

- ✓ FFS = estimated free flow speed in mph.
- ✓ BFFS = estimated base free flow speed in mph (60 mph for rural or suburban based on HCM recommendations).
- ✓ f_{LW} = adjustment for lane width (if less than 12 ft), mph.
- ✓ f_{LC} = adjustment for total lateral clearance (if less than 12 ft), mph.
- ✓ f_M = adjustment for median type, mph.
- ✓ f_A = adjustment for access-point density, mph.

Adjustment for Median Type: Multilane Highways

Median Type	Reduction in Free-Flow Speed, <i>f_M</i> (mi/h)
Undivided	1.6
TWLTLs	0.0
Divided	0.0

(*Source:* Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, December 2000, Exhibit 21-6, p. 21-6.)

Adjustment for Lateral Clearance : Multilane Highways

4-Lane Multilane Highways		6-Lane Multilane Highways	
Total Lateral Clearance (ft)	Reduction in Free-Flow Speed, <i>f_{LC}</i> (mi/h)	Total Lateral Clearance (ft)	Reduction in Free-Flow Speed, <i>f_{LC}</i> (mi/h)
≥12	0.0	≥12	0.0
10	0.4	10	0.4
8	0.9	8	0.9
6	1.3	6	1.3
4	1.8	4	1.7
2	3.6	2	2.8
0	5.4	0	3.9

(Source: Used with permission of Transportation Research Board, National Research Council, *Highway Capacity* Manual, December 2000, Exhibit 21-5, p. 21-6.)

Adjustment for Lane Width: Multilane Highways

- **4** Base condition (fLW = 0)
- Average width of 12 ft or wider across all lanes (same as freeway)

Lane Width (ft)	Reduction in Free-Flow Speed, f _{LW} (mi/h)
≥12	0.0
11	1.9
10	6.6

(*Source:* Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, December 2000, Exhibit 23-4, p. 23-6.)

Adjustment for Access Point Density: Multilane Highways

Access Density (access Points/mi)	Reduction in Free-Flow Speed, <i>f</i> _A (mi/h)
0	0.0
10	2.5
20	5.0
30	7.5
≥ 40	10.0

(Source: Used with permission of Transportation Research Board, National Research Council, Highway Capacity Manual, December

Heavy Vehicle Effects

$$f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$$

Where:

PT, PR = proportion of trucks and buses, and RV's

ET, ER = PCEs for trucks and buses, and RV s

Analysis is based on general extended freeway segment

Level – heavy vehicles maintain same speed as pc's (grade <2%).

Rolling – HVs travel at speeds lower than pc.

Mountainous - HVs operate at crawl speed for significant distances.

When conditions are very severe, we will instead base on grade and length of grade. Restrictions for use: No grade < 3% for longer than $\frac{1}{2}$ mile.

		E_T									
Upgrade (%)		Percentage of Trucks and Buses (%)									
	Length (mi)	2	4	5	6	8	10	15	20	≥25	
< 2	All	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
>2-3	0.00-0.25	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	>0.25-0.50	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	>0.50-0.75	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	>0.75-1.00	2.0	2.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5	
	>1.00-1.50	2.5	2.5	2.5	2.5	2.0	2.0	2.0	2.0	2.0	
	>1.50	3.0	3.0	2.5	2.5	2.0	2.0	2.0	2.0	2.0	
>3-4	0.00-0.25	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	>0.25-0.50	2.0	2.0	2.0	2.0	2.0	2.0	1.5	1.5	1.5	
	>0.50-0.75	2.5	2.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
	>0.75-1.00	3.0	3.0	2.5	2.5	2.5	2.5	2.0	2.0	2.0	
	>1.00-1.50	3.5	3.5	3.0	3.0	3.0	3.0	2.5	2.5	2.5	
	>1.50	4.0	3.5	3.0	3.0	3.0	3.0	2.5	2.5	2.5	

No grade $\geq 3\%$ for longer than $\frac{1}{4}$ mile.

Traffic Engineering Lecture 14

	-						-			
>4-5	0.00-0.25	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	>0.25-0.50	3.0	2.5	2.5	2.5	2.0	2.0	2.0	2.0	2.0
	>050-0.75	3.5	3.0	3.0	3.0	2.5	2.5	2.5	2.5	2.5
	>0.75-1.00	4.0	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0
	>1.00	5.0	4.0	4.0	4.0	3.5	2.5	3.0	3.0	3.0
>5-6	0.00-0.25	2.0	2.0	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	>0.25-0.30	4.0	3.0	2.5	2.5	2.0	2.0	2.0	2.0	2.0
	>0.30-0.50	4.5	4.0	3.5	3.0	2.5	2.5	2.5	2.5	2.5
	>0.50-0.75	5.0	4.5	4.0	3.5	3.0	3.0	3.0	3.0	3.0
	>0.75-1.00	5.5	5.0	4.5	4.0	3.0	3.0	3.0	3.0	3.0
	>1.00	6.0	5.0	5.0	4.5	3.5	3.5	3.5	3.5	3.5
>6	0.00-0.25	4.0	3.0	2.5	2.5	2.5	2.5	2.0	2.0	2.0
	>0.25-0.30	4.5	4.0	3.5	3.5	3.5	3.0	2.5	2.5	2.5
	>0.30-0.50	5.0	4.5	4.0	4.0	3.5	3.0	2.5	2.5	2.5
	>0.50-0.75	5.5	5.0	4.5	4.5	4.0	3.5	3.0	3.0	3.0
	>0.75-1.00	6.0	5.5	5.0	5.0	4.5	4.0	3.5	3.5	3.5
	>1.00	7.0	6.0	5.5	5.5	5.0	4.5	4.0	4.0	4.0

(Source: Used with permission of Transportation Research Board, National Research Council, Highway Capacity Manual, December 2000, Exhibit 29-8, p. 23-10.)

						E_R						
Grade Length (%) (mi)	Length	Percentage of RVs (%)										
	(mi)	2	4	5	6	8	10	15	20	≥25		
≤2	All	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2		
>2-3	0.00-0.50	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2		
	>0.50	3.0	1.5	1.5	1.5	1.5	1.5	1.2	1.2	1.2		
>3-4	0.00-0.25	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2		
	>0.25-0.50	2.5	2.5	2.0	2.0	2.0	2.0	1.5	1.5	1.5		
	>0.50	3.0	2.5	2.5	2.5	2.0	2.0	2.0	1.5	1.5		
>4–5	0.00-0.25	2.5	2.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5		
	>0.25-0.50	4.0	3.0	3.0	3.0	2.5	2.5	2.0	2.0	2.0		
	>0.50	4.5	3.5	3.0	3.0	3.0	2.5	2.5	2.0	2.0		
>5	0.00-0.25	4.0	3.0	2.5	2.5	2.5	2.5	2.0	2.0	1.5		
	>0.25-50	6.0	4.0	4.0	4.0	3.5	3.0	2.5	2.5	2.0		
	>0.50	6.0	4.5	4.0	4.0	4.0	3.5	3.0	2.5	2.0		

(Source: Used with permission of Transportation Research Board, National Research Council, *Highway* Capacity Manual, December 2000, Exhibit 23-10, p. 23-10.)

		E _T Percentage Trucks and Buses (%)							
Downgrade (%)	Length (mi)								
2		5	10	15	≥20				
< 4	All	1.5	1.5	1.5	1.5				
≥4–5	≤4 >4	1.5 2.0	1.5 2.0	1.5 2.0	1.5 1.5				
>5-6	≤4 >4	1.5 5.5	1.5 4.0	1.5 4.0	1.5 3.0				
>6	≤4 >4	1.5 7.5	1.5 6.0	1.5 5.5	1.5 4.5				

D

(Source: Used with permission of Transportation Research Board, National Research Council, Highway Capacity Manual, December 2000, Exhibit 23-11, p. 23-11.)

Traffic Engineering Lecture 14

HW1: FFS on Freeway

Given: Six-lane urban freeway (3 in each direction) Lane width = 11 ft Right-side lateral clearance = 2 ft from the pavement edge Commuter traffic (regular users)

Find FFS

HW2: FFS on Multilane Highway

- Four lane undivided multilane highway
- Posted speed limit=50mi/hr
- 11ft lanes
- Frequent obstructions located 4 ft from the right pavement edge

Traffic Engineering Lecture 14

• 30 access points/mile on the right side of the facility

What is the free flow speed?

HW3: LOS of Basic Freeway

Given:

- > Four-lane freeway (2 in each direction)
- \blacktriangleright Lane width = 11 ft
- > Right-side lateral clearance = 2 ft
- Commuter traffic (regular users)
- > Peak-hour,
- Peak-direction demand volume = 2,000 veh/h 5% trucks, 0% RVs
- > PHF = 0.92 TRD = 4 ramps/mile
- > Rolling terrain

Find: LOS