Principles of Traffic Control

Levels of intersection control

The control of an intersection can be exercised at different levels.

They can be either:

- ♣ Passive control, in passive control, there is no explicit control on the driver.
- ♣ Semi control, in semi control, some amount of control on the driver is there from the traffic agency.
- → Or active control, active control means the movement of the traffic is fully controlled by the traffic agency and the drivers cannot simply manoeuvre the intersection according to his choice.

Passive control

When the volume of traffic is less, no explicit control is required. Here the road users are required to obey the basic rules of the road. Passive control like traffic signs, road markings etc. are used to complement the intersection control. Some of the intersection control that are classified under passive control are as follows:

- No control if the traffic coming to an intersection is low, then by applying the basic rules of the road like driver on the left side of the road must yield and that through movements will have priority than turning movements. The driver is expected to obey these basic rules of the road.
- ❖ Traffic signs: With the help of warning signs, guide signs etc. it is able to provide some level of control at an intersection. Give way control, two-way stop control, and all-way stop control are some examples. The GIVE WAY control requires the driver in the minor road to slow down to a minimum speed and allow the vehicle on the major road to proceed. Two way stop control requires the vehicle drivers on the minor streets should see that the conflicts are avoided. Finally an all-way stop control is usually used when it is difficult to differentiate between the major and minor roads in an intersection. In such a case, STOP sign is placed on all the approaches to the intersection and the driver on all the approaches are required to stop the vehicle. The vehicle at the right side will get priority over the left approach. The traffic control at 'at-grade' intersection may be uncontrolled in cases of low traffic. Here the road users are required to obey the basic rules of the road. Passive control like traffic signs, road markings etc. are used to complement the intersection control.

* Traffic signs plus marking: In addition to the traffic signs, road markings also complement the traffic control at intersections. Some of the examples include stop line marking, yield lines, arrow marking etc.

Semi control

In semi control or partial control, the drivers are gently guided to avoid conflicts. Channelization and traffic rotaries are two examples of this.

- Channelization: The traffic is separated to how through definite paths by raising a portion of the road in the middle usually called as islands distinguished by road markings. The conflicts in traffic movements are reduced to a great extent in such a case. In channelized intersections, as the name suggests, the traffic is directed to how through different channels and this physical separation is made possible with the help of some barriers in the road like traffic islands, road markings etc.
- Traffic rotaries: It is a form of intersection control in which the traffic is made to how along one direction around a traffic island. The essential principle of this control is to convert all the severe conflicts like through and right turn conflicts into milder conflicts like merging, weaving and diverging. It is a form of `at-grade' intersection laid out for the movement of traffic such that no through conflicts are there. Free-left turn is permitted whereas through traffic and right-turn traffic is forced to move around the central island in a clock-wise direction in an orderly manner. Merging, weaving and diverging operations reduces the conflicting movements at the rotary.

Active control

Active control implies that the road user will be forced to follow the path suggested by the traffic control agencies. He cannot maneuver according to his wish. Traffic signals and grade separated intersections come under this classification.

Traffic signals: Control using traffic signal is based on time sharing approach. At a given time, with the help of appropriate signals, certain traffic movements are restricted where as certain other movements are permitted to pass through the intersection. Two or more phases may be provided depending upon the traffic conditions of the intersection. When the vehicles traversing the intersection is very large, then the control is done with the help of signals. The phases provided for the signal may be two or more. If more than two phases are provided, then it is called multiphase signal. The signals can operate in several modes. Most common are fixed time signals and vehicle actuated signals. In fixed time signals, the cycle time, phases and interval of each signal is fixed. Each cycle of the signal will be exactly like another. But they cannot cater to the needs of the fluctuating traffic. On the other hand, vehicle actuated signals can respond to

dynamic traffic situations. Vehicle detectors will be placed on the streets approaching the intersection and the detector will sense the presence of the vehicle and pass the information to a controller. The controller then sets the cycle time and adjusts the phase lengths according to the prevailing traffic conditions.

Grade separated intersections: The intersections are of two types. They are at-grade intersections and grade-separated intersections. In at-grade intersections, all roadways join or cross at the same vertical level. Grade separated intersections, an roadways join or cross at different vertical levels. Sometimes the topography itself may be helpful in constructing such intersections. Otherwise, the initial construction cost required will be very high. Therefore, they are usually constructed on high speed facilities like expressways, freeways etc. These type of intersection increases the road capacity because vehicles can how with high speed and accident potential is also reduced due to vertical separation of traffic.

Grade Separated Intersections

Grade-separated intersections are provided to separate the traffic in the vertical grade. But the traffic need not be those pertaining to road only. When a railway line crosses a road, then also grade separators are used. Different types of grade-separators are flyovers and interchange. Flyovers itself are subdivided into overpass and underpass. When two roads cross at a point, if the road having major traffic is elevated to a higher grade for further movement of traffic, then such structures are called overpass. Otherwise, if the major road is depressed to a lower level to cross another by means of an under bridge or tunnel, it is called under-pass. Interchange is a system where traffic between two or more roadways flows at different levels in the grade separated junctions. Common types of interchange include trumpet interchange, diamond interchange, and cloverleaf interchange.

- **Trumpet interchange**: Trumpet interchange is a popular form of three leg interchange. If one of the legs of the interchange meets a highway at some angle but does not cross it, then the interchange is called trumpet interchange. A typical layout of trumpet interchange is shown in figure below.
- **Diamond interchange**: Diamond interchange is a popular form of four-leg interchange found in the urban locations where major and minor roads crosses. The important feature of this interchange is that it can be designed even if the major road is relatively narrow. A typical layout of diamond interchange is shown in figure below.
- ➤ Clover leaf interchange: It is also a four leg interchange and is used when two highways of high volume and speed intersect each other with considerable turning movements. The main advantage of cloverleaf intersection is that it provides complete

separation of traffic. In addition, high speed at intersections can be achieved. However, the disadvantage is that large area of land is required. Therefore, cloverleaf interchanges are provided mainly in rural areas. A typical layout of this type of interchange is shown in figure below.

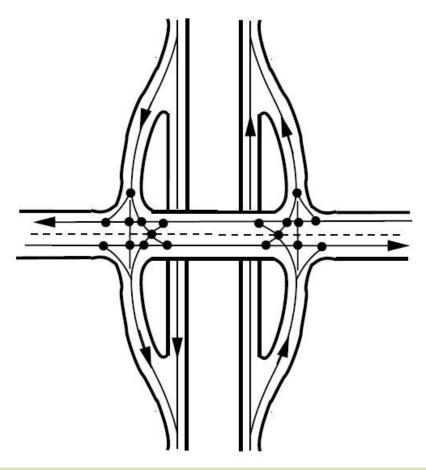


Figure: Diamond Interchange

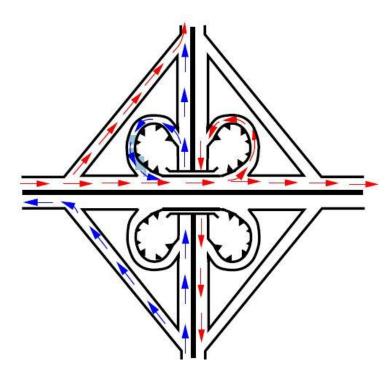


Figure: Cloverleaf Interchange.

Channelized Intersection

Vehicles approaching an intersection are directed to definite paths by islands, marking etc. and this method of control is called channelization. Channelized intersection provides more safety and efficiency. It reduces the number of possible conflicts by reducing the area of conflicts available in the carriageway. If no channelizing is provided the driver will have less tendency to reduce the speed while entering the intersection from the carriageway. The presence of traffic islands, markings etc. forces the driver to reduce the speed and becomes more cautious while maneuvering the intersection.

A channelizing island also serves as a refuge for pedestrians and makes pedestrian crossing safer. Channelization of traffic through a three-legged intersection (refer figure below) and a four-legged intersection is shown in the figure below.

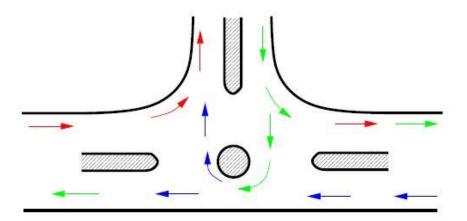


Figure: Channelization of Traffic through a Three-Legged Intersection.

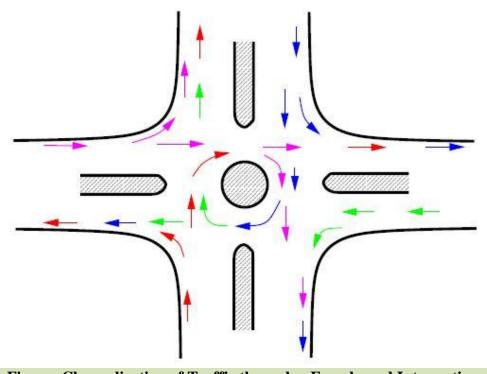


Figure: Channelization of Traffic through a Four-legged Intersection.