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Since ζ < 1, the inverse transform yields

x(t) =
1/m

ωn

√

1 − ζ 2
e−ζωnt sin

(

ωn

√

1 − ζ 2t
)

=
1

mωd

e−ζωnt sin ωd t (E2.1.4)

2.2 VIBRATION OF MULTIDEGREE-OF-FREEDOM SYSTEMS

A typical n-degree-of-freedom system is shown in Fig. 2.7(a). For a multidegree-of-

freedom system, it is more convenient to use matrix notation to express the equations

of motion and describe the vibrational response. Let xi denote the displacement of

mass mi measured from its static equilibrium position; i = 1, 2, . . . , n. The equations

of motion of the n-degree-of-freedom system shown in Fig. 2.7(a) can be derived from

the free-body diagrams of the masses shown in Fig. 2.7(b) and can be expressed in

matrix form as

[m] �̈x + [c] �̇x + [k]�x = �f (2.60)

where [m], [c], and [k] denote the mass, damping, and stiffness matrices, respectively:

[m] =















m1 0 0 · · · 0

0 m2 0 · · · 0

0 0 m3 · · · 0

...
. . .

0 0 0 · · · mn















(2.61)

[c] =

















c1 + c2 −c2 0 · · · 0 0

−c2 c2 + c3 −c3 · · · 0 0

0 −c3 c3 + c4 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · −cn−1 cn

















(2.62)

[k] =

















k1 + k2 −k2 0 · · · 0 0

−k2 k2 + k3 −k3 · · · 0 0

0 −k3 k3 + k4 · · · 0 0

...
...

...
...

...

0 0 0 · · · −kn−1 kn

















(2.63)

The vectors �x, �̇x, and �̈x indicate, respectively, the vectors of displacements, velocities,

and accelerations of the various masses, and �f represents the vector of forces acting

on the masses:

�x =



























x1

x2

x3

...

xn



























, �̇x =



























ẋ1

ẋ2

ẋ3

...

ẋn



























, �̈x =



























ẍ1

ẍ2

ẍ3

...

ẍn



























, �f =



























f1

f2

f3

...

fn



























(2.64)

where a dot over xi represents a time derivative of xi .
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Figure 2.7 (a) An n-degree-of-freedom system; (b) free-body diagrams of the masses.
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Note that the spring–mass–damper system shown in Fig. 2.7 is a particular case of

a general n-degree-of-freedom system. In their most general form, the mass, damping,

and stiffness matrices in Eq. (2.60) are fully populated and can be expressed as

[m] =











m11 m12 m13 · · · m1n

m12 m22 m23 · · · m2n

·
·

m1n m2n m3n · · · mnn











(2.65)

[c] =















c11 c12 c13 · · · c1n

c12 c22 c23 · · · c2n

· · · · ·
· · · · ·
· · · · ·

c1n c2n c3n · · · cnn















(2.66)

[k] =















k11 k12 k13 · · · k1n

k12 k22 k23 · · · k2n

· · · · ·
· · · · ·
· · · · ·

k1n k2n k3n · · · knn















(2.67)

Equation (2.60) denotes a system of n coupled second-order ordinary differential equa-

tions. These equations can be decoupled using a procedure called modal analysis,

which requires the natural frequencies and normal modes or natural modes of the

system. To determine the natural frequencies and normal modes, the eigenvalue problem

corresponding to the vibration of the undamped system is to be solved.

2.2.1 Eigenvalue Problem

The free vibration of the undamped system is governed by the equation

[m] �̈x + [k]�x = �0 (2.68)

The solution of Eq. (2.68) is assumed to be harmonic as

�x = �X sin(ωt + φ) (2.69)

so that

�̈x = −ω2 �X sin(ωt + φ) (2.70)

where �X is the vector of amplitudes of �x(t), φ is the phase angle, and ω is the frequency

of vibration. Substituting Eqs. (2.69) and (2.70) into Eq. (2.68), we obtain

[[k] − ω2[m]] �X = �0 (2.71)

Equation (2.71) represents a system of n algebraic homogeneous equations in unknown

coefficients X1, X2, . . . , Xn (amplitudes of x1, x2, . . . , xn) with ω2 playing the role of

a parameter. For a nontrivial solution of the vector of coefficients �X, the determinant
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of the coefficient matrix must be equal to zero:

|[k] − ω2[m]| = 0 (2.72)

Equation (2.72) is a polynomial equation of nth degree in ω2 (ω2 is called the eigen-

value) and is called the characteristic equation or frequency equation.

The roots of the polynomial give the n eigenvalues, ω2
1, ω

2
2, . . . , ω

2
n. The pos-

itive square roots of the eigenvalues yield the natural frequencies of the system,

ω1, ω2, . . . , ωn. The natural frequencies are usually arranged in increasing order of

magnitude, so that ω1 ≤ ω2 ≤ . . . ≤ ωn. The lowest frequency ω1 is referred to as

the fundamental frequency. For each natural frequency ωi , a corresponding nontrivial

vector �X(i) can be obtained from Eq. (2.71):

[[k] − ω2
i [m]] �X(i) = �0 (2.73)

The vector �X(i) is called the eigenvector, characteristic vector, modal vector, or normal

mode corresponding to the natural frequency ωi .

Of the n homogeneous equations represented by Eq. (2.73), any set of n − 1

equations can be solved to express any n − 1 quantities out of X
(i)
1 , X

(i)
2 , . . . , X

(i)
n

in terms of the remaining X(i). Since Eq. (2.73) denotes a system of homogeneous

equations, if �X(i) is a solution of Eq. (2.73), then ci
�X(i) is also a solution, where ci

is an arbitrary constant. This indicates that the shape of a natural mode is unique, but

not its amplitude. Usually, a magnitude is assigned to the eigenvector �X(i) to make

it unique using a process called normalization. A common normalization procedure,

called normalization with respect to the mass matrix, consists of setting

�X(i)T
[m] �X(i) = 1, i = 1, 2, . . . , n (2.74)

where the superscript T denotes the transpose.

2.2.2 Orthogonality of Modal Vectors

The modal vectors possess an important property known as orthogonality with respect

to the mass matrix [m] as well as the stiffness matrix [k] of the system. To see this prop-

erty, consider two distinct eigenvalues ω2
i and ω2

j and the corresponding eigenvectors

�X(i) and �X(j). These solutions satisfy Eq. (2.71), so that

[k] �X(i) = ω2
i [m] �X(i) (2.75)

[k] �X(j) = ω2
j [m] �X(j) (2.76)

Premultiplication of both sides of Eq. (2.75) by �X(j)T
and Eq. (2.76) by �X(i)T

leads to

�X(j)T
[k] �X(i) = ω2

i
�X(j)T

[m] �X(i) (2.77)

�X(i)T
[k] �X(j) = ω2

j
�X(i)T

[m] �X(j) (2.78)

Noting that the matrices [k] and [m] are symmetric, we transpose Eq. (2.78) and subtract

the result from Eq. (2.77), to obtain

(ω2
i − ω2

j )
�X(j)T

[m] �X(i) = 0 (2.79)
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Since the eigenvalues are distinct, ω2
i �= ω2

j and Eq. (2.79) leads to

�X(j)T
[m] �X(i) = 0, i �= j (2.80)

Substitution of Eq. (2.80) in Eq. (2.77) results in

�X(j)T
[k] �X(i) = 0, i �= j (2.81)

Equations (2.80) and (2.81) denote the orthogonality property of the eigenvectors with

respect to the mass and stiffness matrices, respectively. When j = i, Eqs. (2.77) and

(2.78) become

�X(i)T
[k] �X(i) = ω2

i
�X(i)T

[m] �X(i) (2.82)

If the eigenvectors are normalized according to Eq. (2.74), Eq. (2.82) gives

�X(i)T
[k] �X(i) = ω2

i (2.83)

By considering all the eigenvectors, Eqs. (2.74) and (2.83) can be written in matrix

form as

[X]T[m][X] = [I ] =











1 0

1

. . .

0 1











(2.84)

[X]T[k][X] = [ω2
i ] =











ω2
1 0

ω2
2

. . .

0 ω2
n











(2.85)

where the n × n matrix [X], called the modal matrix, contains the eigenvectors �X(1),
�X(2), . . . , �X(n) as columns:

[X] =
[

�X(1) �X(2) · · · �X(n)
]

(2.86)

2.2.3 Free Vibration Analysis of an Undamped System Using Modal Analysis

The free vibration of an undamped n-degree-of-freedom system is governed by the

equations

[m] �̈x + [k]�x = �0 (2.87)

The n coupled second-order homogeneous differential equations represented by

Eq. (2.87) can be uncoupled using modal analysis. In the analysis the solution, �x(t), is

expressed as a superposition of the normal modes �X(i), i = 1, 2, . . . , n:

�x(t) =

n
∑

i=1

ηi(t) �X(i) = [X]�η(t) (2.88)
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where [X] is the modal matrix, ηi(t) are unknown functions of time, known as modal

coordinates (or generalized coordinates), and �η(t) is the vector of modal coordi-

nates:

�η(t) =



















η1(t)

η2(t)
...

ηn(t)



















(2.89)

Equation (2.88) represents the expansion theorem and is based on the fact that eigen-

vectors are orthogonal and form a basis in n-dimensional space. This implies that any

vector, such as �x(t), in n-dimensional space can be generated by a linear combination

of a set of linearly independent vectors, such as the eigenvectors �X(i), i = 1, 2, . . . , n.

Substitution of Eq. (2.88) into Eq. (2.87) gives

[m][X] �̈η + [k][X]�η = �0 (2.90)

Premultiplication of Eq. (2.90) by [X]T leads to

[X]T[m][X] �̈η + [X]T[k][X]�η = �0 (2.91)

In view of Eqs. (2.84) and (2.85), Eq. (2.91) reduces to

�̈η + [ω2
i ]�η = �0 (2.92)

which denotes a set of n uncoupled second-order differential equations:

d2ηi(t)

dt2
+ ω2

i ηi(t) = 0, i = 1, 2, . . . , n (2.93)

If the initial conditions of the system are given by

�x(t = 0) = �x0 =



















x1,0

x2,0

...

xn,0



















(2.94)

�̇x(t = 0) = �̇x0 =



















ẋ1,0

ẋ2,0

...

ẋn,0



















(2.95)

the corresponding initial conditions on �η(t) can be determined as follows.

Premultiply Eq. (2.88) by [X]T[m] and use Eq. (2.84) to obtain

�η(t) = [X]T[m]�x(t) (2.96)
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Thus,


















η1(0)

η2(0)
...

ηn(0)



















= �η(0) = [X]T[m]�x0 (2.97)



















η̇1(0)

η̇2(0)
...

η̇n(0)



















= �̇η(0) = [X]T[m] �̇x0 (2.98)

The solution of Eq. (2.93) can be expressed as [see Eq. (2.3)]

ηi(t) = ηi(0) cos ωi t +
η̇i(0)

ωi

sin ωi t, i = 1, 2, . . . , n (2.99)

where ηi(0) and η̇i(0) are given by Eqs. (2.97) and (2.98) as

ηi(0) = �X(i)T
[m]�x0 (2.100)

η̇i(0) = �X(i)T

[m] �̇x0 (2.101)

Once ηi(t) are determined, the free vibration solution, �x(t), can be found using

Eq. (2.88).

Example 2.2 Find the free vibration response of the two-degree-of-freedom system

shown in Fig. 2.8 using modal analysis for the following data: m1 = 2 kg, m2 = 5 kg,

k1 = 10N/m, k2 = 20N/m, k3 = 5N/m, x1(0) = 0.1 m, x2(0) = 0, ẋ1(0) = 0, and ẋ2(0)

= 5 m/s.

k1 k2 k3

x1(t) x2(t)

m1 m2

(a)

x1, x1

k1x1 k2(x2 – x1)

x2, x2

k3x2
m1

m2

(b)

.. ..

Figure 2.8 Two-degree-of-freedom system: (a) system in equilibrium; (b) free-body diagrams.
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SOLUTION The equations of motion can be expressed as

[

m1 0

0 m2

]{

ẍ1

ẍ2

}

+

[

k1 + k2 −k2

−k2 k2 + k3

]{

x1

x2

}

=

{

0

0

}

(E2.2.1)

For free vibration, we assume harmonic motion as

xi(t) = Xi cos(ωt + φ), i = 1, 2 (E2.2.2)

where Xi is the amplitude of xi(t), ω is the frequency, and φ is the phase angle.

Substitution of Eq. (E2.2.2) into Eq. (E2.2.1) leads to the eigenvalue problem

[

−ω2m1 + k1 + k2 −k2

−k2 −ω2m2 + k2 + k3

]{

X1

X2

}

=

{

0

0

}

(E2.2.3)

Using the known data, Eq. (E2.2.3) can be written as

[

−2ω2 + 30 −20

−20 −5ω2 + 25

]{

X1

X2

}

=

{

0

0

}

(E2.2.4)

For a nontrivial solution of X1 and X2, the determinant of the coefficient matrix in

Eq. (E2.2.4) is set equal to zero to obtain the frequency equation:

∣

∣

∣

∣

−2ω2 + 30 −20

−20 −5ω2 + 25

∣

∣

∣

∣

= 0

or

ω4 − 20ω2 + 35 = 0 (E2.2.5)

The roots of Eq. (E2.2.5) give the natural frequencies of vibration of the system as

ω1 = 1.392028 rad/s, ω2 = 4.249971 rad/s (E2.2.6)

Substitution of ω = ω1 = 1.392028 in Eq. (E2.2.4) leads to X
(1)
2 = 1.306226X

(1)
1 , while

ω = ω2 = 4.249971 in Eq. (E2.2.4) yields X
(2)
2 = −0.306226X

(2)
1 . Thus, the mode

shapes or eigenvectors of the system are given by

�X(1) =

{

X
(1)
1

X
(1)
2

}

=

{

1

1.306226

}

X
(1)
1 (E2.2.7)

�X(2) =

{

X
(2)
1

X
(2)
2

}

=

{

1

−0.306226

}

X
(2)
1 (E2.2.8)

where X
(1)
1 and X

(2)
1 are arbitrary constants. By normalizing the mode shapes with

respect to the mass matrix, we can find the values of X
(1)
1 and X

(2)
1 as

�X(1)T
[m] �X(1) = (X

(1)
1 )2{ 1 1.306226 }

[

2 0

0 5

]{

1

1.306226

}

= 1
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or X
(1)
1 = 0.30815, and

�X(2)T
[m] �X(2) = (X

(2)
1 )2{ 1 −0.306226 }

[

2 0

0 5

]{

1

−0.306226

}

= 1

or X
(2)
1 = 0.63643. Thus, the modal matrix becomes

[X] =
[

�X(1) �X(2)
]

=

[

0.30815 0.63643

0.402513 −0.19489

]

(E2.2.9)

Using

�x(t) = [X]�η(t) (E2.2.10)

Eq. (E2.2.1) can be expressed in scalar form as

d2ηi(t)

dt2
+ ω2

i ηi(t) = 0, i = 1, 2 (E2.2.11)

The initial conditions of ηi(t) can be determined using Eqs. (2.100) and (2.101) as

ηi(0) = �X(i)T
[m]�x(0) or �η(0) = [X]T[m]�x(0) (E2.2.12)

η̇i(0) = �X(i)T
[m] �̇x(0) or �̇η(0) = [X]T[m] �̇x(0) (E2.2.13)

�η(0) =

[

0.30815 0.63643

0.402513 −0.19489

]T [
2 0

0 5

]{

0.1

0

}

=

{

0.61630

1.27286

}

(E2.2.14)

�̇η(0) =

[

0.30815 0.63643

0.402513 −0.19489

]T [
2 0

0 5

]{

0

5

}

=

{

10.06282

−4.87225

}

(E2.2.15)

The solution of Eq. (E2.2.11) is given by Eq. (2.99):

ηi(t) = ηi(0) cos ωi t +
η̇i(0)

ωi

sin ωi t, i = 1, 2 (E2.2.16)

Using the initial conditions of Eqs. (E2.2.14) and (E2.2.15), we find that

η1(t) = 0.061630 cos 1.392028t + 7.22889 sin 1.392028t (E2.2.17)

η2(t) = 0.127286 cos 4.249971t − 1.14642 sin 4.24997t (E2.2.18)

The displacements of the masses m1 and m2, in meters, can be determined from

Eq. (E2.2.10) as

�x(t) =

[

0.30815 0.63643

0.402513 −0.19489

]{

0.061630 cos 1.392028t + 7.22889 sin 1.392028t

0.127286 cos 4.249971t − 1.14642 sin 4.24997t

}

=















0.018991 cos 1.392028t + 2.22758 sin 1.392028t + 0.081009 cos 4.24997t

− 0.72962 sin 4.24997t

0.024807 cos 1.392028t + 2.909722 sin 1.392028t − 0.024807 cos 4.24997t

+ 0.223426 sin 4.24997t















(E2.2.19)
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2.2.4 Forced Vibration Analysis of an Undamped System Using Modal Analysis

The equations of motion can be expressed as

[m] �̈x + [k]�x = �f (t) (2.102)

The eigenvalues ω2
i and the corresponding eigenvectors �X(i), i = 1, 2, . . . , n, of the

system are assumed to be known. The solution of Eq. (2.102) is assumed to be given

by a linear combination of the eigenvectors as

�x(t) =

n
∑

i=1

ηi(t) �X(i) = [X]�η(t) (2.103)

where ηi(t) denote modal coordinates and [X] represents the modal matrix. Substituting

Eq. (2.103) into Eq. (2.102) and premultiplying the result by [X]T results in

[X]T[m][X] �̈η + [X]T[k][X]�η = [X]T �f (2.104)

Using Eqs. (2.84) and (2.85), Eq. (2.104) can be written as

�̈η + [ω2
i ]�η = �Q (2.105)

where �Q is called the vector of modal forces (or generalized forces) given by

�Q(t) = [X]T �f (t) (2.106)

The n uncoupled differential equations indicated by Eq. (2.105) can be expressed in

scalar form as

d2ηi(t)

dt2
+ ω2

i ηi(t) = Qi(t), i = 1, 2, . . . , n (2.107)

where

Qi(t) = �X(i)T �f (t), i = 1, 2, . . . , n (2.108)

Each of the equations in (2.107) can be considered as the equation of motion of an

undamped single-degree-of-freedom system subjected to a forcing function. Hence, the

solution of Eq. (2.107) can be expressed, using ηi(t), Qi(t), ηi,0, and η̇i,0 in place of

x(t), F(t), x0, and ẋ0, respectively, and setting ωd = ωi and ζ = 0 in

Eqs. (2.57)–(2.59), as

ηi(t) =

∫ t

0

Qi(τ )h(t − τ) dτ + g(t)ηi,0 + h(t)η̇i,0 (2.109)

with

h(t) =
1

ωi

sin ωi t (2.110)

g(t) = cos ωi t (2.111)

The initial values ηi,0 and η̇i,0 can be determined from the known initial conditions �x0

and �̇x0, using Eqs. (2.97) and (2.98).
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2.2.5 Forced Vibration Analysis of a System with Proportional Damping

In proportional damping, the damping matrix [c] in Eq. (2.60) can be expressed as a

linear combination of the mass and stiffness matrices as

[c] = α[m] + β[k] (2.112)

where α and β are known constants. Substitution of Eq. (2.112) into Eq. (2.60) yields

[m] �̈x + (α[m] + β[k]) �̇x + [k]�x = �f (2.113)

As indicated earlier, in modal analysis, the solution of Eq. (2.113) is assumed to be of

the form

�x(t) = [X]�η(t) (2.114)

Substituting Eq. (2.114) into Eq. (2.113) and premultiplying the result by [X]T leads to

[X]T[m][X] �̈η + (α[X]T[m][X] �̇η + β[X]T[k][X] �̇η) + [X]T[k][X]�η = [X]T �f (2.115)

When Eqs. (2.84) and (2.85) are used, Eq. (2.115) reduces to

�̈η + (α[I ] + β[ω2
i ]) �̇η + [ω2

i ]�η = �Q (2.116)

where

�Q = [X]T �f (2.117)

By defining

α + βω2
i = 2ζiωi , i = 1, 2, . . . , n (2.118)

where ζi is called the modal viscous damping factor in the ith mode, Eq. (2.116) can

be rewritten in scalar form as

d2ηi(t)

dt2
+ 2ζiωi

dηi(t)

d t
+ ω2

i ηi(t) = Qi(t), i = 1, 2, . . . , n (2.119)

Each of the equations in (2.119) can be considered as the equation of motion of a vis-

cously damped single-degree-of-freedom system whose solution is given by Eqs. (2.57)

–(2.59). Thus, the solution of Eq. (2.119) is given by

ηi(t) =

∫ t

0

Qi(τ )h(t − τ) dτ + g(t)ηi,0 + h(t)η̇i,0 (2.120)

where

h(t) =
1

ωdi

e−ζiωi t sin ωdi t (2.121)

g(t) = e−ζiωi t

(

cos ωdi t +
ζiωi

ωdi

sin ωdi t

)

(2.122)

and ωdi is the ith frequency of damped vibration:

ωdi =
√

1 − ζ 2
i ωi (2.123)
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2.2.6 Forced Vibration Analysis of a System with General Viscous Damping

The equations of motion of an n-degree-of-freedom system with arbitrary viscous damp-

ing can be expressed in the form of Eq. (2.60):

[m] �̈x + [c] �̇x + [k]�x = �f (2.124)

In this case, the modal matrix will not diagonalize the damping matrix, and an analytical

solution is not possible in the configuration space. However, it is possible to find an

analytical solution in the state space if Eq. (2.124) is expressed in state-space form.

For this, we add the identity �̇x(t) = �̇x(t) to an equivalent form of Eq. (2.124) as

�̇x(t) = �̇x(t) (2.125)

�̈x(t) = −[m]−1[c] �̇x(t) − [m]−1[k]�x(t) + [m]−1 �f (2.126)

By defining a 2n-dimensional state vector �y(t) as

�y(t) =

{

�x(t)

�̇x(t)

}

(2.127)

Eqs. (2.125) and (2.126) can be expressed in state form as

�̇y(t) = [A]�y(t) + [B] �f (t) (2.128)

where the coefficient matrices [A] and [B], of order 2n × 2n and 2n × n, respectively,

are given by

[A] =

[

[0] [I ]

−[m]−1[k] −[m]−1[c]

]

(2.129)

[B] =

[

[0]

[m]−1

]

(2.130)

Modal Analysis in State Space For the modal analysis, first we consider the free

vibration problem with �f = �0 so that Eq. (2.128) reduces to

�̇y(t) = [A]�y(t) (2.131)

This equation denotes a set of 2n first-order ordinary differential equations with constant

coefficients. The solution of Eq. (2.131) is assumed to be of the form

�y(t) = �Yeλt (2.132)

where �Y is a constant vector and λ is a constant scalar. By substituting Eq. (2.132)

into Eq. (2.131), we obtain, by canceling the term eλt on both sides,

[A] �Y = λ �Y (2.133)

Equation (2.133) can be seen to be a standard algebraic eigenvalue problem with a

nonsymmetric real matrix, [A]. The solution of Eq. (2.133) gives the eigenvalues

λi and the corresponding eigenvectors �Y (i), i = 1, 2, . . . , 2n. These eigenvalues and

eigenvectors can be real or complex. If λi is a complex eigenvalue, it can be shown
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that its complex conjugate (λi) will also be an eigenvalue. Also, the eigenvectors �Y (i)

and �Y
(i)

, corresponding to λi and λi , will also be complex conjugates to one another.

The eigenvectors �Y (i) corresponding to the eigenvalue problem, Eq. (2.133), are called

the right eigenvectors of the matrix [A]. The eigenvectors corresponding to the trans-

pose of the matrix are called the left eigenvectors of [A]. Thus, the left eigenvectors,

corresponding to the eigenvalues λi , are obtained by solving the eigenvalue problem

[A]T �Z = λ �Z (2.134)

Since the determinants of the matrices [A] and [A]T are equal, the characteristic

equations corresponding to Eqs. (2.133) and (2.134) will be identical:

|[A] − λ[I ]| ≡ |[A]T − λ[I ]| = 0 (2.135)

Thus, the eigenvalues of Eqs. (2.133) and (2.134) will be identical. However, the

eigenvectors of [A] and [A]T will be different. To find the relationship between �Y (i),

i = 1, 2, . . . , 2n and �Z(j), j = 1, 2, . . . , 2n, the eigenvalue problems corresponding to
�Y (i) and �Z(j) are written as

[A] �Y (i) = λi
�Y (i) and [A]T �Z(j) = λj

�Z(j) (2.136)

or
�Z(j)T

[A] = λj
�Z(j)T

(2.137)

Premultiplying the first of Eq. (2.136) by �Z(j)T
and postmultiplying Eq. (2.137) by

�Y (i), we obtain
�Z(j)T

[A] �Y (i) = λi
�Z(j)T �Y (i) (2.138)

�Z(j)T
[A] �Y (i) = λj

�Z(j)T �Y (i) (2.139)

Subtracting Eq. (2.139) from Eq. (2.138) gives

(λi − λj ) �Z(j)T �Y (i) = 0 (2.140)

Assuming that λi �= λj , Eq. (2.140) yields

�Z(j)T �Y (i) = 0, i, j = 1, 2, . . . , 2n (2.141)

which show that the ith right eigenvector of [A] is orthogonal to the j th left eigen-

vector of [A], provided that the corresponding eigenvalues λi and λj are distinct. By

substituting Eq. (2.141) into Eq. (2.138) or Eq. (2.139), we find that

�Z(j)T
[A] �Y (i) = 0, i, j = 1, 2, . . . , 2n (2.142)

By setting i = j in Eq. (2.138) or Eq. (2.139), we obtain

�Z(i)T
[A] �Y (i) = λi

�Z(i)T �Y (i), i = 1, 2, . . . , 2n (2.143)

When the right and left eigenvectors of [A] are normalized as

�Z(i)T �Y (i) = 1, i = 1, 2, . . . , 2n (2.144)
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Eq. (2.143) gives

�Z(i)T
[A] �Y (i) = λi, i = 1, 2, . . . , 2n (2.145)

Equations (2.144) and (2.145) can be expressed in matrix form as

[Z]T[Y ] = [I ] (2.146)

[Z]T[A][Y ] = [λi] (2.147)

where the matrices of right and left eigenvectors are defined as

[Y ] ≡
[

�Y (1) �Y (2) · · · �Y (2n)
]

(2.148)

[Z] ≡
[

�Z(1) �Z(2) · · · �Z(2n)
]

(2.149)

and the diagonal matrix of eigenvalues is given by

[λi] =











λ1 0

λ2

. . .

0 λ2n











(2.150)

In the modal analysis, the solution of the state equation, Eq. (2.128), is assumed to be

a linear combination of the right eigenvectors as

�y(t) =

2n
∑

i=1

ηi(t) �Y (i) = [Y ] �η(t) (2.151)

where ηi(t), i = 1, 2, . . . , 2n, are modal coordinates and �η(t) is the vector of modal

coordinates:

�η(t) =



















η1(t)

η2(t)
...

η2n(t)



















(2.152)

Substituting Eq. (2.151) into Eq. (2.128) and premultiplying the result by [Z]T, we

obtain

[Z]T[Y ] �̇η(t) = [Z]T[A] [Y ] �η(t) + [Z]T[B] �f (t) (2.153)

In view of Eqs. (2.146) and (2.147), Eq. (2.153) reduces to

�̇η(t) = [λi] �η(t) + �Q(t) (2.154)

which can be written in scalar form as

dηi(t)

d t
= λiηi(t) + Qi(t), i = 1, 2, . . . , 2n (2.155)
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where the vector of modal forces is given by

�Q(t) = [Z]T[B] �f (t) (2.156)

and the ith modal force by

Qi(t) = �Z(i)T
[B] �f (t), i = 1, 2, . . . , 2n (2.157)

The solutions of the first-order ordinary differential equations, Eq. (2.155), can be

expressed as

ηi(t) =

∫ t

0

eλi (t−τ)Qi(τ ) dτ + eλi tηi(0), i = 1, 2, . . . , 2n (2.158)

which can be written in matrix form as

�η(t) =

∫ t

0

e[λi ](t−τ) �Q(τ) dτ + e[λi ]t �η(0) (2.159)

where �η(0) denotes the initial value of �η(t). To determine �η(0), we premultiply Eq. (2.151)

by �Z(i)T
to obtain

�Z(i)T
�y(t) = �Z(i)T

[Y ] �η(t) (2.160)

In view of the orthogonality relations, Eq. (2.141), Eq. (2.160) gives

ηi(t) = �Z(i)T
�y(t), i = 1, 2, . . . , 2n (2.161)

By setting t = 0 in Eq. (2.161), the initial value of ηi(t) can be found as

ηi(0) = �Z(i)T
�y(0), i = 1, 2, . . . , 2n (2.162)

Finally, the solution of Eq. (2.128) can be expressed, using Eqs. (2.151) and (2.159),

as

�y(t) =

∫ t

0

[Y ]e[λi ](t−τ) �Q(τ) dτ + [Y ]e[λi ]t �η(0) (2.163)

Example 2.3 Find the forced response of the viscously damped two-degree-of-

freedom system shown in Fig. 2.9 using modal analysis for the following data: m1 =
2 kg, m2 = 5 kg, k1 = 10 N/m, k2 = 20 N/m, k3 = 5 N/m, c1 = 2 N · s/m, c2 = 3 N ·
s/m, c3 = 1.0 N · s/m, f1(t) = 0, f2(t) = 5 N, and t ≥ 0. Assume the initial conditions

to be zero.

SOLUTION The equations of motion of the system are given by

[m] �̈x + [c] �̇x + [k]�x = �f (E2.3.1)

where

[m] =

[

m1 0

0 m2

]

=

[

2 0

0 5

]

(E2.3.2)

[c] =

[

c1 + c2 −c2

−c2 c2 + c3

]

=

[

5 −3

−3 4

]

(E2.3.3)
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c1 c2 c3

k1 k2 k3

F2(t)

x2(t)

F1(t)

x1(t)

m1 m2

Figure 2.9 Viscously damped two-degree-of-freedom system.

[k] =

[

k1 + k2 −k2

−k2 k2 + k3

]

=

[

30 −20

−20 25

]

(E2.3.4)

�x =

{

x1

x2

}

, �̇x =

{

ẋ1

ẋ2

}

, �̈x =

{

ẍ1

ẍ2

}

, �f =

{

f1

f2

}

(E2.3.5)

The equations of motion can be stated in state form as

�̇y = [A]�y + [B] �f (E2.3.6)

where

[A] =

[

[0] [I ]

−[m]−1[k] −[m]−1[c]

]

=













0 0 1 0

0 0 0 1

−15 10 − 5
2

3
2

4 −5 3
5

− 4
5













(E2.3.7)

[B] =

[

[0]

[m]−1

]

=









0 0

0 0
1
2

0

0 1
5









(E2.3.8)

�y =















x1

x2

ẋ1

ẋ2















(E2.3.9)
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The solution of the eigenvalue problem

[A] �Y = λ �Y

or










0 0 1 0

0 0 0 1

−15 10 − 5
2

3
2

4 −5 3
5

− 4
5

























Y1

Y2

Y3

Y4















= λ















Y1

Y2

Y3

Y4















(E2.3.10)

is given by

λ1 = −1.4607 + 3.9902i

λ2 = −1.4607 − 3.9902i

λ3 = −0.1893 + 1.3794i

λ4 = −0.1893 − 1.3794i

(E2.3.11)

[Y ] ≡
[

�Y (1) �Y (2) �Y (3) �Y (4)
]

=











−0.0754 − 0.2060i −0.0754 + 0.2060i −0.0543 − 0.3501i −0.0543 + 0.3501i

0.0258 + 0.0608i 0.0258 − 0.0608i −0.0630 − 0.4591i −0.0630 + 0.4591i

0.9321 0.9321 0.4932 − 0.0085i 0.4932 + 0.0085i

−0.2803 + 0.0142i −0.2803 − 0.0142i 0.6452 0.6452











(E2.3.12)

The solution of the eigenvalue problem

[A]T �Z = λ �Z

or











0 0 −15 4

0 0 10 −5

1 0 − 5
2

3
5

0 1 3
2

− 4
5

























Z1

Z2

Z3

Z4















= λ















Z1

Z2

Z3

Z4














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gives λi as indicated in Eq. (E2.3.11) and �Z(i) as

[Z] ≡ [ �Z(1) �Z(2) �Z(3) �Z(4)]

=











0.7736 0.7736 0.2337 − 0.0382i 0.2337 + 0.0382i

−0.5911 + 0.0032i −0.5911 − 0.0032i 0.7775 0.7775

0.0642 − 0.1709i 0.0642 + 0.1709i 0.0156 − 0.1697i 0.0156 + 0.1697i

−0.0418 + 0.1309i −0.0418 − 0.1309i 0.0607 − 0.5538i 0.0607 + 0.5538i











(E2.3.14)
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The vector of modal forces is given by

�Q(t) = [Z]T[B] �f (t)

=









0.7736 −0.5911 + 0.0032i 0.0642 − 0.1709i −0.0418 + 0.1309i

0.7736 −0.5911 − 0.0032i 0.0642 + 0.1709i −0.0418 − 0.1309i

0.2337 − 0.0382i 0.7775 0.0156 − 0.1697i 0.0607 − 0.5538i

0.2337 + 0.0382i 0.7775 0.0156 + 0.1697i 0.0607 + 0.5538i









·









0 0

0 0

0.5 0

0 0.2









{

0

5

}

=















−0.0418 + 0.1309i

−0.0418 − 0.1309i

0.0607 − 0.5538i

0.0607 + 0.5538i















(E2.3.15)

Since the initial values, x1(0), x2(0), ẋ1(0), and ẋ2(0), are zero, all ηi(0) = 0, i =
1, 2, 3, 4, from Eq. (2.162). Thus, the values of ηi(t) are given by

ηi(t) =

∫ t

0

eλi (t−τ)Qi(τ ) dτ, i = 1, 2, 3, 4 (E2.3.16)

since Qi(τ ) is a constant (complex quantity), Eq. (E2.3.16) gives

ηi(t) =
Qi

λi

(eλi t − 1), i = 1, 2, 3, 4 (E2.3.17)

Using the values of Qi and λi from Eqs. (E2.3.15) and (E2.3.11), ηi(t) can be expressed

as

η1(t) = (0.0323 − 0.0014i) [e(−1.4607+3.9902i)t − 1]

η2(t) = (0.0323 + 0.0014i) [e(−1.4607−3.9902i)t − 1]

η3(t) = (−0.4 + 0.0109i) [e(−0.1893+1.3794i)t − 1]

η4(t) = (−0.4 − 0.0109i) [e(−0.1893−1.3794i)t − 1]

(E2.3.18)

Finally, the state variables can be found from Eq. (2.151) as

�y(t) = [Y ]�η(t) (E2.3.19)

In view of Eqs. (E2.3.12) and (E2.3.18), Eq. (E2.3.19) gives

y1(t) = 0.0456
[

e(−1.4607+3.9902i)t − 1
]

m

y2(t) = 0.0623
[

e(−1.4607−3.9902i)t − 1
]

m

y3(t) = −0.3342
[

e(−0.1893+1.3794i)t − 1
]

m/s

y4(t) = −0.5343
[

e(−0.1893−1.3794i)t − 1
]

m/s

(E2.3.20)

2.3 RECENT CONTRIBUTIONS

Single-Degree-of-Freedom Systems Anderson and Ferri [5] investigated the prop-

erties of a single-degree-of-freedom system damped with generalized friction laws.

The system was studied first by using an exact time-domain method and then by
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using first-order harmonic balance. It was observed that the response amplitude can

be increased or decreased by the addition of amplitude-dependent friction. These

results suggest that in situations where viscous damping augmentation is difficult or

impractical, as in the case of space structures and turbomachinery bladed disks, bene-

ficial damping properties can be achieved through the redesign of frictional interfaces.

Bishop et al. [6] gave an elementary explanation of the Duhamel integral as well as

Fourier and Laplace transform techniques in linear vibration analysis. The authors

described three types of receptances and explained the relationships between them.

Multidegree-of-Freedom Systems The dynamic absorbers play a major role in reduc-

ing vibrations of machinery. Soom and Lee [7] studied the optimal parameter design of

linear and nonlinear dynamic vibration absorbers for damped primary systems. Shaw

et al. [8] showed that the presence of nonlinearities can introduce dangerous instabil-

ities, which in some cases may result in multiplication rather than reduction of the

vibration amplitudes. For systems involving a large number of degrees of freedom, the

size of the eigenvalue problem is often reduced using a model reduction or dynamic

condensation process to find an approximate solution rapidly. Guyan reduction is a

popular technique used for model reduction [9]. Lim and Xia [10] presented a tech-

nique for dynamic condensation based on iterated condensation. The quantification

of the extent of nonproportional viscous damping in discrete vibratory systems was

investigated by Prater and Singh [11]. Lauden and Akesson derived an exact complex

dynamic member stiffness matrix for a damped second-order Rayleigh–Timoshenko

beam vibrating in space [12].

The existence of classical real normal modes in damped linear vibrating systems

was investigated by Caughey and O’Kelly [13]. They showed that the necessary and

sufficient condition for a damped system governed by the equation of motion

[I ] �̈x(t) + [A] �̇x(t) + [B]�x(t) = �f (t) (2.164)

to possess classical normal modes is that matrices [A] and [B] be commutative; that

is, [A][B] = [B][A]. The scope of this criterion was reexamined and an alternative

form of the condition was investigated by other researchers [14]. The settling time

of a system can be defined as the time for the envelope of the transient part of the

system response to move from its initial value to some fraction of the initial value.

An expression for the settling time of an underdamped linear multidegree-of-freedom

system was derived by Ross and Inman [15].
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PROBLEMS
2.1 A building frame with four identical columns that

have an effective stiffness of k and a rigid floor of

mass m is shown in Fig. 2.10. The natural period of

vibration of the frame in the horizontal direction is found

to be 0.45 s. When a heavy machine of mass 500 kg

is mounted (clamped) on the floor, its natural period

of vibration in the horizontal direction is found to be

0.55 s. Determine the effective stiffness k and mass m

of the building frame.

2.2 The propeller of a wind turbine with four blades is

shown in Fig. 2.11. The aluminum shaft AB on which

the blades are mounted is a uniform hollow shaft of outer

diameter 2 in., inner diameter 1 in., and length 10 in. If

EI

EI
EI

m

EI

(a) (b)

EI

500 kg

EI
EI

m

EI

Figure 2.10
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each blade has a mass moment of inertia of 0.5 lb-in.-

sec2, determine the natural frequency of vibration of the

blades about the y-axis. [Hint : The torsional stiffness kt

of a shaft of length l is given by kt = GI0/l, where G

is the shear modulus (G = 3.8 × 106 psi for aluminum)

and I0 is the polar moment of inertia of the cross section

of the shaft.]

••
A

yB

10 in.

Figure 2.11

2.3 What is the difference between the damped and

undamped natural frequencies and natural time periods

for a damping ratio of 0.5?

2.4 A spring–mass system with mass 1 kg is found

to vibrate with a natural frequency of 10 Hz. The same

system when immersed in an oil is observed to vibrate

with a natural frequency of 9 Hz. Find the damping

constant of the oil.

2.5 Find the response of an undamped spring–mass

system subjected to a constant force F0 applied during

0 ≤ t ≤ τ using a Laplace transform approach. Assume

zero initial conditions.

2.6 A spring–mass system with mass 10 kg and stiff-

ness 20,000 N/m is subjected to the force shown in

Fig. 2.12. Determine the response of the mass using the

convolution integral.

F(t)

t = natural period

50 N

0
t

t

5

Figure 2.12

2.7 Find the response of a spring–mass system sub-

jected to the force F(t) = F0e
iωt using the method of

Laplace transforms. Assume the initial conditions to be

zero.

2.8 Consider a spring–mass system with m = 10 kg

and k = 5000 N/m subjected to a harmonic force F(t) =
400 cos 10t N. Find the total system response with the

initial conditions x0 = 0.1 m and ẋ0 = 5 m/s.

2.9 Consider a spring–mass–damper system with m =
10 kg, k = 5000 N/m, and c = 200 N·s/m subjected to

a harmonic force F(t) = 400 cos 10t N. Find the steady-

state and total system response with the initial conditions

x0 = 0.1 m and ẋ0 = 5 m/s.

2.10 A simplified model of an automobile and its sus-

pension system is shown in Fig. 2.13 with the following

data: mass m = 1000 kg, radius r of gyration about

the center of mass G = 1.0 m, spring constant of front

suspension kf = 20 kN/m, and spring constant of rear

suspension kr = 15 kN/m.

(a) Derive the equations of motion of an automobile

by considering the vertical displacement of the

center of mass y and rotation of the body about

the center of mass θ as the generalized coordi-

nates.
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l2 = 1.6 ml1 = 1.2 m

G
BA

(a)

y

l2

kr

kf

l1

G

B

A

θ

(b)

Figure 2.13

(b) Determine the natural frequencies and mode

shapes of the automobile in bounce (up-and-

down motion) and pitch (angular motion)

modes.

2.11 Find the natural frequencies and the m-orthogonal

mode shapes of the system shown in Fig. 2.9(a) for the

following data: k1 = k2 = k3 = k and m1 = m2 = m.

2.12 Determine the natural frequencies and the m-

orthogonal mode shapes of the system shown in

Fig. 2.14.

2.13 Find the free vibration response of the sys-

tem shown in Fig. 2.8(a) using modal analysis. The

data are as follows: m1 = m2 = 10 kg, k1 = k2 =

k3 = 500 N/m, x1(0) = 0.05 m, x2(0) = 0.10 m, and

ẋ1(0) = ẋ2(0) = 0.

2.14 Consider the following data for the two-degree-of-

freedom system shown in Fig. 2.9: m1 = 1 kg, m2 =
2 kg, k1 = 500 N/m, k2 = 100 N/m, k3 = 300 N/m,

c1 = 3 N·s/m, c2 = 1 N·s/m, and c3 = 2 N·s/m.

(a) Derive the equations of motion.

(b) Discuss the nature of error involved if the off-

diagonal terms of the damping matrix are neglected

in the equations derived in part (a).

(c) Find the responses of the masses resulting from the

initial conditions x1(0) = 5 mm, x2(0) = 0, ẋ1(0) =
1 m/s, and ẋ2(0) = 0.
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l

a

l

2m

m

q1
q2

k

Figure 2.14

2.15 Determine the natural frequencies and m-

orthogonal mode shapes of the three-degree-of-freedom

system shown in Fig. 2.15 for the following data:

x1(t)

x2(t)

x3(t)

k1

k2

k3

k4

m1

m2

m3

Figure 2.15

m1 = m3 = m, m2 = 2 m, k1 = k4 = k, and k2 =
k3 = 2 k.

2.16 Find the free vibration response of the sys-

tem described in Problem 2.14 using modal analysis

c1k1

F1(t)x1(t)

F2(t)x2(t)

m1

m2

c2k2

Figure 2.16
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Tool (punch)

Tool base (mass m1)

Platform (mass m2)

Machine (mass m3)

Isolation pad (k1, c1)

Rubber mounting (k2, c2)

Foundation (k3, c3)

(a)

k1 c1

c2k2

x2(t)

x1(t)

F1(t)

m1

m3

m2

k3 c3

x3(t)

(b)

Figure 2.17

with the following data: m = 2 kg, k = 100 N/m,

x1(0) = 0.1 m, and x2(0) = x3(0) = ẋ1(0) = ẋ2(0) =
ẋ3(0) = 0.

2.17 Consider the two-degree-of-freedom system shown

in Fig. 2.16 with the following data: m1 = 10 kg, m2 =
1 kg, k1 = 100 N/m, k2 = 10 N/m, and dampers c1 and

c2 corresponding to proportional damping with α =
0.1 and β = 0.2. Find the steady-state response of the

system.

2.18 A punch press mounted on a foundation as

shown in Fig. 2.17(a) has been modeled as a three-

degree-of-freedom system as indicated in Fig. 2.17(b).

The data are as follows: m1 = 200 kg, m2 = 2000 kg,

m3 = 5000 kg, k1 = 2 × 105 N/m, k2 = 1 × 105 N/m,

and k3 = 5 × 105 N/m. The damping constants c1,

c2, and c3 correspond to modal damping ratios of

ζ1 = 0.02, ζ2 = 0.04, and ζ3 = 0.06 in the first, sec-

ond, and third modes of the system, respectively.



Problems 67

Find the response of the system using modal analy-

sis when the tool base m1 is subjected to an impact

force F1(t) = 500δ(t) N.

2.19 A spring–mass–damper system with m = 0.05 lb-

sec2/in., k = 50 lb/in., and c = 1 lb-sec/in., is subjected

to a harmonic force of magnitude 20 lb. Find the

resonant amplitude and the maximum amplitude of the

steady-state motion.

2.20 A machine weighing 25 lb is subjected to a har-

monic force of amplitude 10 lb and frequency 10 Hz.

If the maximum displacement of the machine is to

be restricted to 1 in., determine the necessary spring

constant of the foundation for the machine. Assume

the damping constant of the foundation to be 0.5 lb-

sec/in.


