Chapter Two Steady Heat Conduction

2.2.2. HEAT CONDUCTION IN CYLINDERS AND SPHERES

Consider steady heat conduction through a hot-water pipe. Heat is continuously lost to
the outdoors through the wall of the pipe, and we intuitively feel that heat transfer
through the pipe is in the normal direction to the pipe surface and no significant heat

transfer takes place in the pipe in other directions figure 2—11.

Figure 2-11 Heat is lost from a hot-water pipe to the air outside in the radial direction,
and thus heat transfer from a long pipe is one-dimensional

The wall of the pipe, whose thickness is rather small, separates two fluids at different

temperatures, and thus the temperature gradient in the radial direction will be relatively

large. Further, if the fluid temperatures inside and outside the pipe remain constant,

then heat transfer through the pipe is steady. Thus heat transfer through the pipe can be

modeled as steady and one-dimensional. The temperature of the pipe in this case will

depend on one direction only (the radial r-direction) and can be expressed as T= T(r).

Consider a long cylindrical layer (such as a circular pipe) of inner radius 77y, outer radius
T, length L, and average thermal conductivity (k) figure 2—-12. The two surfaces of the

cylindrical layer are maintained at constant temperatures T; and T5.
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Figure 2-12 A long cylindrical pipe (or spherical shell) with specified inner and outer
surface temperatures T1 and T2.
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There is no heat generation in the layer and the thermal conductivity is constant. For

one-dimensional heat conduction through the cylindrical layer, we have T(T). Then

Fourier’s law of heat conduction for heat transfer through the cylindrical layer can be

expressed as

dT
Qcond,cyl = _kAE (W) 2-24

where A=2mrrL is the heat transfer area at location r. Note that A depends on r, and thus

it varies in the direction of heat transfer. Separating the variables in the above equation

and integrating from r = 1y, where T(,.qy= T, tor = 1, where T2y = T3, gives

J‘Tz Qcond,cyl dr — fTZ de 2-25

r:rl A T=T1

Substituting A=2mrL and performing the integrations give

T, -T;
Qeond,cyt = 2TLK—= (W) 2-26
Y ln( 2/1‘1)
since Qcona,cyr = cOnstant. This equation can be rearranged as
_ 1T
Qcond,cyl - R (W) 2-27
cyl
Where
T outer radius
R — In( 2/7”1) — In( /inner radius) 2.28
cyl 2Lk 2nt(length)(Thermal conductivity
Rcyl is the thermal resistance of the cylindrical layer against heat conduction, or

simply the conduction resistance of the cylinder layer.

We can repeat the analysis for a spherical layer by taking A=47r? and performing

the integrations in Eq. 2-25. The result can be expressed as
I, -T;

Qcond,sph = 2-29

Rsph

Where
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R -1 outer raduis—inner raduis 930
Sph 4ntrir, k. 4m(inner raduis)(outer raduis)(Thermal conductivity

Rsph is the thermal resistance of the spherical layer against heat conduction, or

simply the conduction resistance of the spherical layer.

Now consider steady one-dimensional heat flow through a cylindrical or spherical layer
that is exposed to convection on both sides to fluids at temperatures Tw,; and T, With

heat transfer coefficients h, and h,, respectively, as shown in figure 2—13.
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Figure 2-13 The thermal resistance network for a cylindrical (or spherical) shell
subjected to convection from both the inner and the outer sides
The thermal resistance network in this case consists of one conduction and two
convection resistances in series, just like the one for the plane wall, and the rate of heat
transfer under steady conditions can be expressed as

Q — Tool_Tooz 2_31

Reotal

Where

Riotar = Rconv,l + Rcyl + Rconv,z

o n("2/r) 1
" (2mryL)hy 2Lk (2rryL)h,

2-32

Eq. (2-32) for a cylindrical layer, and

Riotar = Rconv,l + Rsph + Rconv,z
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_ 1 (r;—71) 1
o (47TT12)h1 47TT1T2k (47TT22)h2

2-33

Eq. (2-33) for a spherical layer,
Note that A in the convection resistance relation R ,,,,, = 1/hA is the surface area at

which convection occurs. It is equal to A=2nrrL for a cylindrical surface and A = 47‘[7‘12
for a spherical surface of radius r. Also note that the thermal resistances are in series,
and thus the total thermal resistance is determined by simply adding the individual

resistances, just like the electrical resistances connected in series.

o Multilayered Cylinders and Spheres

Steady heat transfer through multilayered cylindrical or spherical shells can be handled
just like multilayered plane walls discussed earlier by simply adding an additional
resistance in series for each additional layer. For example, the steady heat transfer rate
through the three-layered composite cylinder of length L shown in Fig. 2-14 with

convection on both sides can be expressed as

Q — TOOl_TOOZ 2_34

Reotal
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Figure 2-14 The thermal resistance network for heat transfer through a three-layered
composite cylinder subjected to convection on both sides
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where R;,:q; IS the total thermal resistance, expressed as
Rtotal = Rconv,l + Rcyl,l + Rcyl,z + Rcyl,3 + Rconv,z

1 +1n(r2/r1)_|_1n(r3/rz)_l_ln(r4/T3)_|_ 1

" hA,  2mLk, 2mLk, 2mLks hyA,

2-35
where A; =2nrLand A, = 471y 2

Equation 2-35 can also be used for a three-layered spherical shell by replacing the

thermal resistances of cylindrical layers by the corresponding spherical ones.

Example 3/

A 17-m internal diameter spherical tank made of 2-cm-thick stainless steel
(k=15 W/m - °C) is used to store iced water at T,; = 0°C. The tank is located
in a room whose temperature is T, = 22°C. The walls of the room are also at
22°C. The outer surface of the tank is black and heat transfer between the outer
surface of the tank and the surroundings is by natural convection and radiation.
The convection heat transfer coefficients at the inner and the outer surfaces of
the tank are h, = 80 W/m? - °C and h, = 10 W/m? - °C, respectively. Determine
the rate of heat transfer to the iced water in the tank

Figure 2-15 Schematic for Example 3
Solution:
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The thermal resistance network for this problem is given in figure 2-15. Noting that the
inner diameter of the tank is D1 = 3 m and the outer diameter is D2 = 3.04 m, the inner
and the outer surface areas of the tank are
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Ay = 7B = w(3m)2 = 28.3 m?
A, = 7P = w(3.04 m)2 = 29.0 m?

Also, the radiation heat transfer coefficient is given by

Bpg = 8o (T5 + T + 1)

But we do not know the outer surface temperature T, of the tank, and thus we
cannot calculate A,,4. Therefore, we need to assume a T, value now and check
the accuracy of this assumption later. We will repeat the calculations if neces-
sary using a revised value for Ta.

We note that 7, must be between 0°C and 22°C, but it must pe closer
to 0O°C, since the heat transfer coefficient inside the tank is much largar. Taking
T. = B°C = 278 K, the radiation heat transfer coefficient is determined to be

Fq = (1)(5.67 > 1078 Wim? - K9[(295 K)? + (278 K)?][(295 + 278) K]
= 5.34 W/m? - K = 5.34 W/m? - °C
Then the individual thermal resistances become

1 1

R, = Repav 1 = A, BOWmI-"C)@83md) 0.000442°C/W
R =R I (1.52 — 1.50) m
17 Tsphere T gmknirs 4w (15 W/m - °C)(1.52 m)(1.50 m)
= 0.000047°C/'W
_ __ 1 _ 1 _ o
Ro = Kam2 = 77, = ToWimz - C)(2o.0mg — 0-00345°C/W
1 1

= 0.00646°C/W

Reaa = B Az (5.34 W/mZ - °C)(29.0 m?)

The two parallel resistances R, and R4 can be replaced by an equivalent resis-

tance R, determined from
1 _ 1 1 _ 1 1 _
Reome _ R, " R, — 000335 ' Oo0646 _ 1447 WIC

which gives

R,

BV

= 0.00225°C/W
Now all the resistances are in series, and the total resistance is determined
to be

Row = R, + R, + Ry, = 0.000442 + 0.000047 + 0.00225 = 0.00274°C/W

Then the steady rate of heat transfer to the iced water becomes

Taz— T (22=0)°C

Q=—F— = gooziacw — 2029W  (or Q= 8.027kl/s)

To check the validity of our original assumption, we now determine the outer
surface temperature from

I.,— T,
Q=—F— — h=Tz— QRagn
= 22°C — (8029 W)(0.00225°C/W) = 4°C
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2.2.3. CRITICAL RADIUS OF INSULATION

We know that adding more insulation to a wall or to the attic always decreases heat
transfer. The thicker the insulation, the lower the heat transfer rate. This is expected,
since the heat transfer area A is constant, and adding insulation always increases the
thermal resistance of the wall without increasing the convection resistance.

Adding insulation to a cylindrical pipe or a spherical shell, however, is a different
matter. The additional insulation increases the conduction resistance of the insulation
layer but decreases the convection resistance of the surface because of the increase in
the outer surface area for convection. The heat transfer from the pipe may increase or

decrease, depending on which effect dominates.

Insulation

Figure 2-16 An insulated cylindrical pipe exposed to convection from the outer
surface and the thermal resistance network associated with it.

Consider a cylindrical pipe of outer radius r{ whose outer surface temperature T'; is
maintained constant figure 2-16. The pipe is now insulated with a material whose

thermal conductivity is k and outer radius is r,. Heat is lost from the pipe to the

surrounding medium at temperature T ,, with a convection heat transfer coefficient h.
The rate of heat transfer from the insulated pipe to the surrounding air can be expressed

as figure 2-17.

Tl _Too _ T1 - Too

- T
Rins*tRconv ln( 2/7“1) . 1
2mLk | h(2mryL)

Q= (W) 2-36
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Figure 2-17

The variation of with the outer radius of the insulation 7 is plotted in Fig. 2-17. The
value of r, at which reaches a maximum is determined from the requirement that

d/dr2=0 (zero slope). Performing the differentiation and solving for r, yields the

critical radius of insulation for a cylindrical body to be

=

Terclinder = n (m) 2-37

Note that the critical radius of insulation depends on the thermal conductivity of the

insulation k and the external convection heat transfer coefficient h.

The discussions above can be repeated for a sphere, and it can be shown in a similar

manner that the critical radius of insulation for a spherical shell is

2k
Ter clinder — s (m) 2-38

where k is the thermal conductivity of the insulation and h is the convection heat transfer
coefficient on the outer surface.
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Example 4/

A 17-mm-diameter and 5-m-long electric wire is tightly wrapped with a 2-mm-
thick plastic cover whose thermal conductivity is k = 0.15 W/m - °C. Electrical
measurements indicate that a current of 10 A passes through the wire and there
is a voltage drop of 8 V along the wire. If the insulated wire is exposed to a
medium at T, = 30°C with a heat transfer coefficient of h = 12 W/m? - °C, de-
termine the temperature at the interface of the wire and the plastic cover in
steady operation. Also determine whether doubling the thickness of the plastic
cover will increase or decrease this interface temperature.
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Figure 2-18 Schematic for Example 4

Solution:
n L
O mmp «——iv—e———s I
K plastic Ru:um'

Q= W.=VIi=(8V)(10A) =80W

A; = 2@rz)L = 27(0.0035 m)(5 m) = 0.110 m?

1 1 o
Reoa hA; (12 W/m? - °C)(0.110 m?) LHARERL

R In(rz/ry) In(3.5/1.5)
g 2wkl 27(0.15 W/m - °C) (5 m)

= 0.18°C/W

and therefore

Rout = Ryasuc + Regey = 0.76 + 0.18 = 0.94°C/W

Then the interface temperature can be determined from

_7‘|_Tz

Q A > I, =T, + QR
= 30°C + (80 W)(0.94°C/W) = 105°C
_k_015W/m-°C _ _
=% 12 WimZ -°C 0.0125 m = 12.5 mm




