2000

Slab thickness and DDM

1. Which	one of	following	relation	is	correct	:
					DOMESTIC STATE OF THE PARTY OF	

- (A) Design shear strength is greater than required shear strength.
- (B) Design shear strength is greater or equal than required shear strength.
- (C) Design shear strength is lesser than required shear strength.
- (D) Design shear strength is lesser or equal than required shear strength.

- 2. Concrete slab carried directly by columns, without the use of beams or girders, such slab is described by:
 - (A) Flat plate
 - (B) Flat slab
 - (C) Solid slab
 - (D) Waffle slab

Answer (A)

- 3. Concrete slab carried directly by drop panels , without the use of beams or girders , such slab is described by:
 - (A) Flat plate
 - (B) Flat slab
 - (C) Solid slab
 - (D) Waffle slab

Answer (B)

- 4. If the ratio of length to width of one slab panel is larger than 2, then most of the load is carried by :
 - (A) Long direction.
 - (B) Short direction
 - (C) Long and short directions.
 - (D) None of them

Answer (B)

- 5. circular column that has diameter equals to 500 mm, shall be treated as square column that has a length equals to: (C) 445 mm (D) 450 mm
 - (A) 400 mm
- (B) 440 mm

Answer (C) $(0.89 \times 500 = 445)$

- 6. Enlarged head of a supporting column of a flat slab is technically known as ?
 - (A) Supporting end of column
- (B) Top of column
- (C) Capital
- (D) Drop Panel

- 7. Projection below the slab used to reduce the amount of negative reinforcement over a column or the minimum required slab thickness, and to increase the slab shear strength in technically known as: (C) Capital (B) Top of column
 - (A) Supporting end of column

Answer (D)

- 8. Panel is a slab portion bounded by:
 - (A) Column.
 - (B) Beam
 - (C) Wall
 - (D) Column, beam and wall:

Answer (D)

			a contacting agonal to the	
9. Column strip is a de	sign strip with a width or	n each side of a column	cemerane equal to un.	
(A) Lesser of 0.25	ε, or 0.25 ε ₂ ,			
(B) Lesser of 0.48				
(C)Larger of 0.25				
(D) Larger of 0.38				
Answer (A)				
10. Middle strip is a d	lesign strip bounded by:			
(A) Two beams				
(B) Two column				
(C)Two column s	trip			
(D) None of abov	e.			
Answer (C)				
11 7	stand alab thisburges of d	lean name! below the cla	h shall not be assumed:	
11. In computing requ	uired slab thickness of d	ance from edge of dron	panel to edge of column.	
(A) Greater than o	ne-quarter (1/4) the dist	tance from edge of drop	n panel to edge of column	
(B) Greater than (one-quarter (1/0) the dis	lance from edge of dror	p panel to edge of column.	
(C)Greater than o	ne-quarter (1/8) the dist	istorea from adag of de	panel to edge of column.	
	one-quarter (1/10) the d	istance from edge of di	op panel to edge of column	
Answer (A)				
12 The minimum	thiskness for flat clab s	hall not be less inan'		
	thickness for flat slab s		(D) 150 mm	
(A) 90 mm	thickness for flat slab s (B) 100 mm	(C) 125 mm	(D) 150 mm	
			(D) 150 mm	
(A) 90 mm Answer (B)	(B) 100 mm	(C) 125 mm		ontrol is:
(A) 90 mm Answer (B)	(B) 100 mm	(C) 125 mm I for flat slab with drop	panel due to deflection co	entrol is:
(A) 90 mm Answer (B)	(B) 100 mm	(C) 125 mm		ontrol is:
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$	(B) 100 mm	(C) 125 mm I for flat slab with drop	panel due to deflection co	ontrol is:
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D)	(B) 100 mm kness for interior pane (B) $\frac{\ell_n}{30}$	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$	panel due to deflection co (D) $\frac{\ell_n}{36}$	
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D)	(B) 100 mm kness for interior pane (B) $\frac{\ell_n}{30}$	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$	panel due to deflection co (D) $\frac{\ell_n}{36}$	
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D)	(B) 100 mm kness for interior pane (B) $\frac{\ell_n}{30}$	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$	panel due to deflection co	
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is:	(B) 100 mm skness for interior pane (B) $\frac{\ell_n}{30}$ ckness for exterior pane	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$ and (4.5 × 4) m for flat	panel due to deflection co (D) $\frac{\ell_n}{36}$	
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is: (A) 90 mm	(B) 100 mm kness for interior pane (B) $\frac{\ell_n}{30}$	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$	panel due to deflection co (D) $\frac{\ell_n}{36}$ plat with edge beams due	
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is: (A) 90 mm Answer (D)	(B) 100 mm kness for interior pane (B) $\frac{\ell_{\rm R}}{30}$ ckness for exterior pan (B) 100 mm	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$ and (4.5 × 4) m for flat (C) 250 mm	panel due to deflection co (D) $\frac{\ell_n}{36}$ plat with edge beams due (D) 140 mm	to deflection
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is: (A) 90 mm Answer (D)	(B) 100 mm kness for interior pane (B) $\frac{\ell_{\rm R}}{30}$ ckness for exterior pan (B) 100 mm	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$ and (4.5 × 4) m for flat (C) 250 mm	panel due to deflection co (D) $\frac{\ell_n}{36}$ plat with edge beams due (D) 140 mm	to deflection
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is: (A) 90 mm Answer (D)	(B) 100 mm kness for interior pane (B) $\frac{\ell_R}{30}$ ckness for exterior pan (B) 100 mm kness for exterior pan	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$ and (4.5 × 4) m for flat (C) 250 mm	panel due to deflection co (D) $\frac{\ell_n}{36}$ plat with edge beams due	to deflection
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is: (A) 90 mm Answer (D)	(B) 100 mm kness for interior pane (B) $\frac{\ell_n}{30}$ ckness for exterior pan (B) 100 mm kness for exterior pane	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$ and (4.5 × 4) m for flat (C) 250 mm and for flat slab with drop (C) 250 mm	panel due to deflection co (D) $\frac{\ell_n}{36}$ plat with edge beams due (D) 140 mm	to deflection
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is: (A) 90 mm Answer (D) 15. The minimum thic deflection control (f	(B) 100 mm kness for interior pane (B) $\frac{\ell_n}{30}$ ckness for exterior pan (B) 100 mm kness for exterior pane	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$ and (4.5 × 4) m for flat (C) 250 mm and for flat slab with drop (C) 250 mm	panel due to deflection co (D) $\frac{\ell_n}{36}$ plat with edge beams due (D) 140 mm	to deflection
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is: (A) 90 mm Answer (D)	(B) 100 mm kness for interior pane (B) $\frac{\ell_R}{30}$ ckness for exterior pan (B) 100 mm kness for exterior pan	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$ and (4.5 × 4) m for flat (C) 250 mm	panel due to deflection co (D) $\frac{\ell_n}{36}$ plat with edge beams due (D) 140 mm	to deflection
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is: (A) 90 mm Answer (D) 15. The minimum thic deflection control (for (A) $\frac{\ell_n}{31}$	(B) 100 mm kness for interior pane (B) $\frac{\ell_n}{30}$ ckness for exterior pan (B) 100 mm kness for exterior pane	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$ and (4.5 × 4) m for flat (C) 250 mm and for flat slab with drop (C) 250 mm	panel due to deflection co (D) $\frac{\ell_n}{36}$ plat with edge beams due (D) 140 mm	to deflection
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is: (A) 90 mm Answer (D) 15. The minimum thic deflection control (for (A) $\frac{\ell_n}{31}$ Answer (C)	(B) 100 mm kness for interior pane (B) $\frac{\ell_n}{30}$ ckness for exterior pan (B) 100 mm kness for exterior pan $\ell_y = 420 \text{ MPa}$) is: (B) $\frac{\ell_n}{30}$	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$ and (A.5 × 4) m for flat (C) 250 mm The control of the flat slab with drop (C) $\frac{\ell_n}{36}$	p panel due to deflection co (D) $\frac{\ell_n}{36}$ plat with edge beams due (D) 140 mm rop panel and with edge b	to deflection
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is: (A) 90 mm Answer (D) 15. The minimum thic deflection control (for (A) $\frac{\ell_n}{31}$ Answer (C)	(B) 100 mm kness for interior pane (B) $\frac{\ell_n}{30}$ ckness for exterior pan (B) 100 mm kness for exterior pan $\ell_y = 420 \text{ MPa}$) is: (B) $\frac{\ell_n}{30}$	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$ and (A.5 × 4) m for flat (C) 250 mm The control of the flat slab with drop (C) $\frac{\ell_n}{36}$	p panel due to deflection co (D) $\frac{\ell_n}{36}$ plat with edge beams due (D) 140 mm rop panel and with edge b	to deflection
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is: (A) 90 mm Answer (D) 15. The minimum thic deflection control (f (A) $\frac{\ell_n}{31}$ Answer (C)	(B) 100 mm kness for interior pane (B) $\frac{\ell_n}{30}$ ckness for exterior pan (B) 100 mm kness for exterior pan $k_y = 420 \text{ MPa}$) is: (B) $\frac{\ell_n}{30}$	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$ and (A.5 × 4) m for flat (C) 250 mm The control of the flat slab with drop (C) $\frac{\ell_n}{36}$	panel due to deflection co (D) $\frac{\ell_n}{36}$ plat with edge beams due (D) 140 mm	to deflection
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is: (A) 90 mm Answer (D) 15. The minimum thic deflection control (f (A) $\frac{\ell_n}{31}$ Answer (C) 6. The minimum thic control is (fy = 420 M	(B) 100 mm kness for interior pane (B) $\frac{\ell_n}{30}$ ckness for exterior pan (B) 100 mm kness for exterior pan (b) 100 mm kness for exterior pan (c) 420 MPa) is: (b) $\frac{\ell_n}{30}$ kness for interior pan (Pa):	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$ and (4.5 × 4) m for flat (C) 250 mm The for flat slab with drop (C) $\frac{\ell_n}{36}$ and (C) $\frac{\ell_n}{36}$ and (E) $\frac{\ell_n}{36}$	panel due to deflection co $(D) \frac{\ell_n}{36}$ plat with edge beams due $(D) 140 \text{ mm}$ rop panel and with edge b $(D) \frac{\ell_n}{28}$ It slab with drop panels described to the defendance of the de	to deflection
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is: (A) 90 mm Answer (D) 15. The minimum thic deflection control (f (A) $\frac{\ell_n}{31}$ Answer (C) 6. The minimum thic control is $(f_y = 420 \text{ M})$	(B) 100 mm kness for interior pane (B) $\frac{\ell_n}{30}$ ckness for exterior pan (B) 100 mm kness for exterior pan $k_y = 420 \text{ MPa}$) is: (B) $\frac{\ell_n}{30}$	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$ and (A.5 × 4) m for flat (C) 250 mm The control of the flat slab with drop (C) $\frac{\ell_n}{36}$	p panel due to deflection co (D) $\frac{\ell_n}{36}$ plat with edge beams due (D) 140 mm rop panel and with edge b	to deflection
(A) 90 mm Answer (B) 13. The minimum thic (A) $\frac{\ell_n}{33}$ Answer (D) 14. The minimum thic control is: (A) 90 mm Answer (D) 15. The minimum thic deflection control (f (A) $\frac{\ell_n}{31}$ Answer (C)	(B) 100 mm kness for interior pane (B) $\frac{\ell_n}{30}$ ckness for exterior pan (B) 100 mm kness for exterior pan (b) 100 mm kness for exterior pan (c) 420 MPa) is: (b) $\frac{\ell_n}{30}$ kness for interior pan (Pa):	(C) 125 mm I for flat slab with drop (C) $\frac{\ell_n}{40}$ and (4.5 × 4) m for flat (C) 250 mm The for flat slab with drop (C) $\frac{\ell_n}{36}$ and (C) $\frac{\ell_n}{36}$ and (E) $\frac{\ell_n}{36}$	panel due to deflection co $(D) \frac{\ell_n}{36}$ plat with edge beams due $(D) 140 \text{ mm}$ rop panel and with edge b $(D) \frac{\ell_n}{28}$ It slab with drop panels described to the defendance of the de	to deflection

23. For end span (exterior panel) the positive moment for slab without beams between all supports and with edge beam is: (A) 0.35

(B) 0.65

(C) 0.16

(D) 0.5

Answer (D)

Table 8.10.4.2-Distribution coefficients for end

		Slab with	Slab wir beams be interior sa	tween	
	Exterior edge unrestrained	beams between all supports	Without edge beam	With edge beam	Exterior edge fully restrained
Interior negative	0.75	0.70	0.70	0.70	0.65
Positive	0.63	0.57	0.52	0.50	0.35
Exterior negative	0	0.16	0.26	0.30	0.65

- 24. Lateral distribution of moments between middle and column strips and beams are depends upon:
 - (A) The ratio ℓ_2/ℓ_1
 - (B) The relative stiffness of the beam and the slab.
 - (C)The degree if torsional restraint provided by the edge beam
 - (D) All of above.

Answer (D)

- 25. For parallel nonprestressed reinforcement in a horizontal layer, clear spacing shall be at least the :
 - (A) Greatest of 25mm.
 - (B) Greatest of db.
 - (C) Greatest of (4/3)d_{agg}
 - (D) All of above

Answer (D)

- 26. For nonprestressed solid slabs, maximum spacing (s) of deformed longitudinal reinforcement at critical section shall be the lesser of:
 - (A) 2h
 - (B) 450
 - (C) 2h ad 450
 - (D) None of above

Answer (C)

- if width of the column or wall is at least $(3/4)\ell_2$ then:
 - (A) Negative Mu shall be uniformly distributed across ℓ2
 - (B) Positive Mu shall be uniformly distributed across ℓ_2
 - (C)Positive and negative Mu shall be uniformly distributed across \(\ell_2 \)
 - (D) All of above

Answer (A)

- Slab with beams between columns along exterior edges, exterior panels shall be considered to be 28. without edge beams if α_f is:
 - (A) Lesser than 0.5
 - (B) Lesser than 0.8
 - (C) Larger than 1
 - (D) None of above

2. The minim taken as: (A) $\ell_n/28$	(B)	ε _π /30 8.3.1.1— ed two-	an exter	(C) im thick bs with	ℓ _n /33 mess of out inter	nonpre rior bea drop pan	(D) ℓ _n /3 a- ms		s (f _y = 280 M	MPa) is
tuken as .	(B) Table 8	ε _n /30 8.3.1.1— ed two-	-Minimu	(C)	ℓ _n /33	nonpre	(D) $\ell_n/3$		s (f _y = 280 M	⁄IPa) is
tuken as .			an exter						s (f _y = 280 N	⁄IРа) is
(A) 465 mm Answer (A) (0.	(B) 4	40 mm = 465 r	nm) ((C) 445 r	nm ((D) 500	mm	0.000		K
 Hexagonal has a length eq 	column the	at has d	iagonal l	length e	qual to	500 mm	, shall l	oe treated a	s square col	umn th
(A) 400 mm Answer (D)		440 mn	1 (C) 445	mm	(D) 500	mm	9	9	<
30. Polygon col length equals	umn that h	as dime	ensions	equals t	o 500 m	m, shall	be treat	ted as squar	e column th	at has
Answer (D)										
(C) 9% (D) 10%										

29. At discontinuous edge with edge beam if af if lesser (<) than 0.8 than slab thickness shall be

Answer (c)

increased by at least:

(A) 5% (B) 8%

The minimum thickness for an interior panel in flat slab with drop panel ($f_y = 420 \text{ MPa}$) is taken 33. as:

Cx31

1,34

(A) ℓ_n/33

(B) ℓ_n/34

520

(C) l_n/36

(D) l_n/40

l. 34

Table 8.3.1.1-Minimum thickness of nonprestressed two-way slabs without interior beams (mm)[1]

ln 31

Answer (c)

	Witho	ut drop pa	nels ^[3]	With drop panels[3]		
	Exterio	r panels	Interior panels	Exterio	r panels	Interior panels
for MPa ⁽²⁾	Without edge beams	With edge beams ^[4]		Without edge beams	With edge beams ^[4]	
280	C/33	(₄ /36	6/36	6,36	£,40	€ _n :40
420	C ₄ /30	Cn/33	<i>L</i> _n '33	C _m /33	C, 36	C./36
520	f=/28	£,131	4/31	€w31	C, 34	€/34

34. The minimum thickness for an exterior panel in flat slab with drop panel and without edge beams $(f_y = 420 \text{ MPa})$ is taken as:

(A) ℓ_n/31

(B) ℓ_p/33

(C) \₀/36

(D) \(\ell_n/40\)

Answer (B)

Table 8.3.1.1—Minimum thickness of nonprestressed two-way slabs without interior beams (mm)^[1]

	Witho	ut drop pa	mels ^[3]	With	drop pan	els[N]
	Exterio	r panels	Interior panels	Exterio	nanels	Interior panels
fr MPa ⁽¹⁾	Without edge beams	With edge beams ^[4]		Without edge beams	With edge beams ^{id}	
280	C/33	1,36	<i>C</i> _/36	C_36	<i>€,/40</i>	C+40
420	E _n /30	1,/33	<i>L</i> , 33	£433	1,36	t,36
520	f=28	C. 31	Cu/31	t _n 31	6.34	Cn/34

- 35. Direct Design method for analysis of two way slab can be used if:
- (A) There shall be at least three continuous spans in each direction.
- (B) Successive span length measured center to center of supports in each direction shall not be differing by more than one third the longer span.
- (C) Panel shall be rectangular, with ratio of longer to shorter panel dimensions, measured center to center of supports, not to exceed 2.
- (D) All of above

Answer (D)

- 36. Lateral distribution of moments are depends upon :
 - (A) The ration ℓ_2/ℓ_1
 - (B) The relative stiffness of the beam and the slab.
 - (C) The degree of torsional restraint provided by the edge beam.
 - (D) All of above.

Answer (D)

37. For longitudinal distribution of moments for flat plate without edge beams shown in figure below:

Choose the correct answer:

The negative moment at column strip at exterior support is:

(A) 36.3 kN.m

(B) 72.9 kN.m

(C) 100 kN.m

(D) 46.4 kN.m

Answer (B)

C.S moment = $1 \times 72.9 = 72.9$

Table 8.10.5.2—Portion of exterior negative M_u in column strip

			ℓ_2/ℓ_1	
$a_{j1}\ell_{2}/\ell_{1}$	βε	0.5	1.0	2.0
0	0	1.0	1.0	1.0
· ·	≥2.5	0.75	0.75	0.75
≥1.0	0	1.0	1.0	1.0
21.0	≥2.5	0.90	0.75	0.45

The positive moment at middle strip at interior panel is:

(A) 34.02 kN.m (B) 90.125 kN.m (C) 21.648 kN.m

(D) 74.674 kN.m

Table 8.10.5.5—Portion of positive M, in column strip

		ℓ_2/ℓ_1	
antilli	0.5	1.0	2.0
0	0.60	0.60	0.60
≥1.0	0.90	0.75	0.45

Note: Linear interpolations shall be made between values shown.

C.S moment = $0.6 \times 85.05 = 51.03$

M.S moment = 85.05 - 51.03 = 34.02 kN.m

Answer (A)

The negative moment at middle strip at interior panel is: (A) 34.02 kN.m (B) 43.534 kN.m

(C) 39.27 kN.m

(D) 25.125 kN.m

Table 8.10.5.1—Portion of interior negative M_u in column strip

		12/11	
$a_{j1}l_{1}/l_{1}$	0.5	1.0	2.0
0	0.75	0.75	0.75
≥1.0	0.90	0.75	0.45

Note: Linear interpolations shall be made between values shown.

C.S moment = $0.75 \times 157.05 = 117.78$ M.S moment = 157.05 - 117.78= 39.27 kN.m

Answer (C)

ممكن بمكان الرسم يعطى جدول ويطلب نفس المطاليب

	Exterior Span			Interio	r span
	Exterior Negative	Positive	Interior Negative	Negative	Positive
Total Moment	72.9	121.5	170.1	157.95	85.05

ويطلب نفس السؤال رقم 37

Or

	Exterior Span		Interio	Interior span		Exterior Span		
	Exterior Negative	Positive	Interior Negative	Negative	Positive	Exterior Negative	Positive	Interior Negative
Total Moment	72.9	121.5	170.1	157.95	85.05	72.9	121.5	170.1

- In direct design method, Ib (the moment of inertia of the effective beam) is based on the: 38.
 - (A) Effective concrete section
 - (B) Gross concrete section
 - (C) Cracked concrete.
 - (D) Transformed concrete section

Answer (B)

- In direct design method, Is (the moment of inertia of the effective slab) is based on the: 39.
 - (A) Effective concrete section
 - (B) Gross concrete section
 - (C) Cracked concrete
 - (D) Transformed concrete section

40. Beams between supports shall resist the portion of column strips Mu is:
(A) 0.5 (B) 0.75 (C) 0.85 (D) 0.9

Answer (C)

Table 8.10.5.7.1—Portion of column strip M_{ν} in beams

eptoti	Distribution coefficient		
0	0		
>1.0	0.65		

A Middle strip adjacent and parallel to wall is designed for:

- (A) Twice the moment assigned to the half middle strip corresponding to the first row of interior support.
- (B) Third the moment assigned to the half middle strip corresponding to the first row of interior support.
- (C) Half the moment assigned to the half middle strip corresponding to the first row of interior support.
- (D) One third the moment assigned to the half middle strip corresponding to the first row of interior support.

Answer (A)

Shear

42. Reduction factor Ø in shear is equal to:

(A) 0.9

(B) 0.8

(C) 0.75

(D) 0.65

Answer (C)

- 43. V_{ug} is:
 - (A) Is the shear strength provided by shear reinforcement
 - (B) Is the nominal shear strength provided by concede
 - (C) Is the factored shear stress on the slab critical section for two way action due to gravity loads without moment transfer.
- (D) None of them

Answer (C)

44. Which of the following relation is correct:

(A) $V_S = V_C - V_U$ (B) $V_S = V_U$ (C) $V_S = V_U/V_C$ (D) none of them

Answer (D)

في حال كان هناك اختيار صحيح فهو Vu = Vc + Vs

45. The shear perimeter (b_0) for (300 × 400) mm corner column in a flat plate with 150 effective depth is

(A) 2000 mm (B) 1000 mm (C) 850 mm (D) 700 mm

Answer (C)

- 46. Which one of following relation is correct:
 - (A) Design shear strength is greater than required shear strength.
 - (B) Design shear strength is greater or equal than required shear strength.
 - (C) Design shear strength is lesser than required shear strength.
 - (D) Design shear strength is lesser or equal than required shear strength.

47. The shear perimeter (b _o) for (500 × 500) mm interior column in a flat plate with 200 effective depth is
(A) 2000 mm (B) 1000 mm (C) 850 mm (D) 2800 mm Answer (D)
48. The shear perimeter (b ₀) for (500 × 500) mm edge column in a flat plate with 200 effective depth is (A) 2000 mm (B) 1900 mm (C) 850 mm (D) 2800 mm Answer (C)
49 Modified factor (v.) when there is a more than in the factor (v.) when there is a more than its contract of the factor (v.) when there is a more than its contract of the factor (v.) when the contract of the contract of the factor (v.) when the contract of
 49. Modified factor (γ_v) when there is a moment transfer for an interior square column is: (A) 0.4 (B) 1 (C) 0.7 (D) 1.1
Answer (A)
$\gamma_{f=\frac{1}{1+\frac{2}{3}\sqrt{\frac{b_1}{b_2}}}}$ for square column b1 = b2 then $\gamma_f = 0.6$ then $\gamma_v = 1-0.6 = 0.4$
 Modified factor (γ_f) when there is a moment transfer for an interior square column is: (A) 0.4 (B) 1 (C) 0.7 (D) 0.6
Answer (D)
51. An interior column with dimensions (500 × 500) mm and d = 200 mm the C _{AB} for this column is (A) 400 mm (B) 350 mm (C) 600 mm (D) 800 mm Answer (B) Remember C _{AB} = B1/2 = 7000/2 = 350 mm
ممكن يطلب
CAB للكولوم Edge or corner
52. (J _c) for an interior column with dimensions (500×500) mm and $d = 170$ mm is: (A) 3.4535×10^{10} mm ⁴ (B) 3.07861×10^{10} mm ⁴ (C) 2.649×10^{10} mm ⁴ (D) 9.1×10^{9} mm Answer (A)
edge or corner ممكن يطلب عد للكولوم
53. Be for square column equal to: (A) 1 (B) 0.5 (C) 1.5 (D) 4
Answer (A) Remember $\beta c = \frac{larger\ length\ of\ column}{smaller\ length\ of\ column}$
54. α_s for interior column is:
(A) 20 (B) 30 (C) 40 (D) 50
Answer (C) Remember $\alpha_s = 40$ for interior column, 30 for edge column and 20 for corner column.
55. For two way members with shear reinforcement, vc shall not exceed the limits of:
55. For two way members with shear reinforcement, (A) $0.5\sqrt{f_c}$ (B) $0.17\sqrt{f_c}$ (C) $0.55\sqrt{f_c}$ (D) $0.33\sqrt{f_c}$
Answer (B)

56. For two way members with shear reinforcement, effective depth shall be selected such that $v_{\rm o}$ calculated at critical sections does not exceed the value

(A) $0.5\sqrt{f_c}$ (B) $0.17\sqrt{f_c}$ (C) $0.55\sqrt{f_c}$ (D) $0.33\sqrt{f_c}$

57. In punching shear, the first critical section will be:

(A) At d/2 from the face of the column.

- (B) At d/2 from the face of the column capital
- (C) At d/2 from the face of the drop panel

(D) All the above

Answer (A)

58. A reinforced concrete slab is 200 mm thick. The diameter of the stirrups that cannot be used is of (A) 8 mm (B) 10 mm (C) 12 mm (D) 16 mm
Answer (D)

بخصوص موضوع shear ممكن يطلب فقط check بدون حساب حديد القص

Check the two-way shear action (punching shear) only around an interior column (400×400) mm in a flat plate floor (just check do not calculate shear reinforcement), the floor will carry a total factored load of (Vu) 600 kN, Use effective depth (d) = 180 mm, and $f_c = 25$ MPa

Or

او ممكن يطلب حساب حديد القص (spacing)

Check the two-way shear action (punching shear) only around an interior column (400×400) mm in a flat plate floor ,find the area of vertical shear reinforcement if required the floor will carry a total factored load of (Vu) 600 kN, Use effective depth (d) = 180 mm, and $f_c = 25 \text{ MPa}$

- 59. If fc' =32 MPa then vc for interior column (450 × 450) mm with effective depth (d) equal to 150 is
- (A) 1.7 MPa
- (B) 1.867MPA
- (C) 1.4 MPa
- (D) 0.4 MPa

$$v_c = \min \begin{cases} 0.33 \, \sqrt{f_c'} = \, 0.33 \times \sqrt{32} \, = 1.867 \, \, \text{MPa} \\ 0.17 \, \left(\, 1 + \frac{2}{\beta} \right) \sqrt{f_c'} = \, 0.17 \times \left(1 + \frac{2}{1} \right) \times \, \sqrt{32} \, = 2.885 \, \, \text{MPa} \\ 0.083 \, \left(2 + \frac{\alpha_s \, d}{b_o} \, \right) \sqrt{f_c'} = \, 0.083 \times \left(2 + \frac{40 \, \times 150}{2400} \, \right) \times \sqrt{32} = 2.113 \, \, \text{MPa} \end{cases}$$

Answer (B)

- 60. What is the name of Code in our study?
- (A) ACI 318-14
- (B) ACI 416-14
- (C) ACI 222
- (D) ACI 5656

Anwer (A)

Yield Line

- 61. In orthotropic slab
 - (A) The resisting moments are equal in all directions
 - (B) The resisting moment are different in two perpendicular directions
 - (C) The resisting moment are different in all perpendicular directions
 - (D) The resisting moment are equal in all perpendicular directions Answer (B)
- 62. In isotropic slab
 - (A) The resisting moments are equal in all directions
 - (B) The resisting moment are different in two perpendicular directions
 - (C) The resisting moment are different in all perpendicular directions
 - (D) The resisting moment are equal in all perpendicular directions
 Answer (A)
- 63. The internal work (IW or Wi) is:
 - (A) $\sum m\ell\theta$ (B) $\sum m\ell\delta$ (C) $\sum w\ell\delta$ (D) $\sum w\ell$ Answer (A)
- 64. The external work (EW or We) for slab subjected to uniform load is:
 - (A) $\sum m\ell\theta$ (B) $\sum m\ell\delta$ (C) $\sum wA\delta$ (D) $\sum w\ell$ Answer (C)
- 65. The internal work (IW or Wi) for square or rectangular or circular slab subjected to concentrated load at it 'is center is:
 - (A) $\sum m\ell\theta$ (B) $\sum m\ell\delta$ (C) $\sum wA\delta$ (D) P8 Answer (D)

Location of axis of rotation

- 1. Axes of rotation generally lie along lines of support (the support line may be a real hinge as in simple supported, or it may establish the location of a yield line, which acts as a plastic hinge and in continuous or fixed support).
- 2. Axes of rotation pass over any columns.
- 3. The slab segments can be considered to rotate as right bodies in space about these axes of rotation.
- 4. Yield lines are generally straight.
- 5. A yield line passes through the intersection of the axes of rotation of adjacent slab.
- 6. A yield line passes under the point load (concentrated force).

- 66. Which of the following is not a characteristic feature of yield lines?
 - (A) Yield line are always parallel
 - (B) Yield line sometimes be parallel with support
 - (C) Yield line sometimes be nonparallel with supports
 - (D) Yield line maybe intersects.

Answer (A)

67. The exterior work (We) for slab subjected to concentrated load (P) shown below is:

- (A) 0.5P
- (B) P
- (C) 0.3P
- (D) 8P

Answer (B)

68. The interior work (Wi) for square slab subjected to a concentrated load at center shown below is:

(A) 2m

- (B) 4m
- (C) 6m
- (D) 8m

Answer (D)

How?

 $Wi = m \ell \emptyset = m \times 8 \times \frac{1}{4} \times 4_{No. of segment}$

69. What is the correct yield line pattern for slab below?

(A)

(B)

(C)

In Class U prestress concrete is:

(A)
$$f_t \ge 0.62 \sqrt{f_c^+}$$
 (B) $f_t \le 0.62 \sqrt{f_c^+}$ (C) $f_t > 0.62 \sqrt{f_c^-}$ (D) $f_t < 0.62 \sqrt{f_c^-}$

Table 24.5.2.1—Classification of prestressed flexural members based on fr

Assumed behavior	Class	Limits of f,
Uncracked	541	6 < 0.62 17.
Transition between incracked and cracked	r	0.62√f; <f;≤1.0√f;< td=""></f;≤1.0√f;<>
Cracked	C	6>10\T:

وممكن يسنل عن Class T or Class C

71. Losses of prestress concrete are:

(A) Elastic expansion of concrete (B) shrinkage of steel (C) Cracks in concrete (D) Friction Answer (D)

Advantages of prestressed concrete

- 1. High strength steel and concrete
- 2. Eliminated cracks in concrete
- 3. P.C more suitable for structure of long span and those carrying heavy loads
- 4. Under D.L the deflection is reduced, owing to the cambering effected of prestress (useful for bridges and long cantilevers)

72. Advantage of prestress concrete are:

- (A) High strength steel and concrete
- (B) Eliminated cracks in concrete
- (C) P.C more suitable for structure of long span and those carrying heavy loads
- (D) All of above

Answer (D)

Disadvantages of prestressed concrete

- 1. Higher cost of materials
- 2. More complicated formwork maybe necessitated
- 3. End anchorages and bearing plates are usually required
- 4. Labor costs are greater.

73. Disadvantage of prestress concrete are:

- (A) High labor costs
- (B) High cost of materials
- (C) More complicated form may be required
- (D) All the above.

Answer (D)

Pretension concrete is: 74.

- (A) Tendons tensioned before the concrete is placed
- (B) Tendons is tensioned after the concrete has hardened
- (C) All of above
- (D) None of above

Answer (A)

- 75. Post tension concrete is:
 - (A) Tendons tensioned before the concrete is placed
 - (B) Tendons is tensioned after the concrete has hardened
 - (C) All of above
 - (D) None of above

Answer (B)

- 76. In initial stage the member:
 - (A) Is under prestress force and self-weight only
 - (B) In under prestress force and self-weight and working load
 - (C) None of above

Answer (A)

- 77. In final (service) stage the member:
 - (A) Is under prestress force and self-weight only
 - (B) In under prestress force and self-weight and working load
 - (C) None of above

Answer (B)

Losses in prestressing force

- 1. Elastic shortening of concrete
- 2. Concrete creep under sustained load
- 3. Concrete shrinkage
- 4. Relaxation of stress in steel
- 5. Friction loss between the tendons and the concrete during stressing operation
- 6. Loss due to slip of steel strands

ممكن يسئل سؤال عن النقاط اعلاه مثل سؤال

76

- 78. Losses in prestress could be due to:
 - (A) Elastic expansion of concrete
 - (B) Shrinkage of steel
 - (C) Cracks in concrete
 - (D) Friction

Answer (D)

- 79. Sustained loads mean
 - (A) Dead Load (B) Live load (C) Total load (D) all of above

(A) 0.7fci (B) 0.5√fci (C) 0.5fci (D) 0.45 fci Answer (A) Table 24.5.3.1—Concrete compressive stress limits immediately after transfer of prestress Concrete compressive stress limits End of simply-supported members 0.70/ All other locations 0.60fd All other location ممكن يسئل عن او عن mid span فيكون الحل لكلا الحالتين هو: 0.6 fci 81. Concrete compressive stress limits at service load for prestress plus sustained load is 0.7fci (B) 0.5√fci (C) 0.5fci (D) 0.45 fc Answer (D) Table 24.5.4.1—Concrete compressive stress limits at service loads Concrete compressive stress Load condition limits 0.45fc Prestress plus sustained load 0.60f; Prestress plus total load ممكن يسئل عن Concrete compressive stress limits at service load prestress plus total load فيكون الحل 0.6fc 82. Concrete tensile stress limits immediately after transfer of prestress in tension zone at all other location (or maybe mid span) is (D) 0.45 fc (B) 0.25√fci (C) 0.5fci (A) 0.7fci Answer (B) Table 24.5.3.2—Concrete tensile stress limits immediately after transfer of prestress, without additional bonded reinforcement in tension zone

> Location Ends of simply-supported members

> > All other locations

Concrete tensile stress limits

0.50 f 0.25\f'

Concrete compressive stress limits immediately after transfer of prestress at end of simply

supported is:

Equivalent Frame Method

- In equivalent frame method, the fixed end moments for a uniform load(w) will be: $(A) < w\ell^2/12$ (B) $w\ell^2/12$ $(C) > w\ell^2/12$ (D) none of these

Answer (C)

- Stiffness of equivalent column (modified column stiffness) is:
 - (A) Greater that stiffness of column
 - (B) Equal to stiffness of column
 - (C) Lesser than stiffness of column
 - (D) None of these

Answer (C)

- 85. In Equivalent frame method, k will be
 - (A) <4 (B) ≤ 4 (C) =4 (D) >4

Answer (D)

- 86. In Equivalent frame method, COF will be
 - (A) < 0.5 (B) ≤ 0.5 (C) = 0.5 (D) > 0.5

Answer (D)

- 87. The flexibility of the equivalent (Kec) column is equal to _

 - (A) $\frac{1}{K_{ec}} = \frac{1}{\sum K_c}$ (B) $\frac{1}{K_{ec}} = \frac{1}{\sum K_c} \frac{1}{\sum K_c}$
 - (C) $\frac{1}{K_{ec}} = \frac{1}{\sum K_c} + \frac{1}{\sum K_t}$
 - (D) None of above.

Answer (C)

- Isb is: 88.
 - (A) Moment of inertia for slab.
 - (B) Moment of inertia for beam.
 - (C) Moment of inertia for slab and beam.
 - (D) None of above.
- 89. If a slab thickness equal to 500 mm and ℓ_e equal to 5000 mm then K_{AB} for column equal to:
 - (A) 6.09 N.mm
- (B) 12.44 N.mm

Answer (C)

C12/6c = 500 / 5000 = 0.1

r column stiffness

AI C1	14
Til	不
i	1 dc
Blil	7+
-i	

Coefficients for column stiffn		Stiffness factor		Carry over factor		
Slab*	Uniform load FEM=Coeff.(wl ₂ l ₁ ²)		Bottom	Тор	COFAB	COFBA
depth		MBA	KAB	KBA	0,500	0.500
CIA/Ec	0.083	0.083	4.00	4.00	0.496	0.579
0.00	0.100	0.075	4.91	4.21	0.486	0.667
0.05	0.100	0.068	6.09	4.44	0.471	0.765
0.10	0.135	0.060	7.64	4.71	0.452	0.875
0.15	0.153	0.053	9.69	5.00	0.429	1.000
0.20	PROPERTY AND ADDRESS OF	0.047	12.44	5.33	1	
0.25	0.172				1	-

If a slab thickness equal to 500 mm and & equal to 5000 mm then CAB for column equal to: (A) 6.09 (B) 0.486 (C) 4.91 Answer (B)

Coefficients for column stiffness

Slab*	Uniform load		Stiffness	factor	Carry ov	er factor
depth	FEM=Cos	ff.(wl ₂ l ₃ ²)	Bottom	Тор	Carry	
CIAIR.	MAR	Maa	k _{AB}	k _{BA}	COFAB	COFBA
0.00	0.083	0.083	4.00	4.00	0.500	0.500
0.05	0.100	0.075	4.91	4.21	0.496	0.579
0.10	0.118	0.068	6.09	4.44	0.486	0.687
	0.115	0.060	7.64	4.71	0.471	0.765
0.15		0.053	9.69	5.00	0.452	0.875
0.20	0.153	0.033	12.44	5.33	0.429	1.000

91. If a slab thickness equal to 500 mm and ℓ_e equal to 5000 mm then M_{AB} for column equal to: (D) 0.118

(A) 6.09

(B) 0.486

(C) 4.91

Answer

Coefficients for column stiffness.

	oefficients for column stiffne		load Stiffness factor		Carry over factor	
Slab*	United Con	Uniform load FEM=Coeff.(Wl ₂ l ₁ ²)		Top		COFRA
depth			KAB	KBA	COFAB	
Cza/e.	MAB	MBA	4.00	4.00	0.500	0.500
0.00	0.083	0.083	100000000000000000000000000000000000000	4.21	0.496	0.579
0.05	0.100	0.075	4.91	4.44	0.486	0.667
0.10	0.118	0.068	6.09	-	0.471	0.765
	0.135	0.060	7.64	4.71	G I Company	0.87
0.15		0.053	9.69	5.00	0.452	1
0.20	0.153		12.44	5.33	0.429	1.00
0.25	0.172	0.047	12.44	1		-

- 92. At exterior supports without brackets or capitals, the critical section for negative Mu in the span perpendicular to an edge shall be at ______ of the supporting element :
 - (A) The center.
 - (B) The face.
 - (C) A distance not farther away than $0.175\ell_1$.
 - (D) None of above.

when use equivalent frame method to analysis a slab, panel shall be:

- (A) Rectangular with a ratio of longer to shorter panel dimensions measured center to center of supports, not to exceed 2.
- (B) Rectangular with a ratio of longer to shorter panel dimensions measured center to center of supports, not to exceed 5.
- (C) Rectangular with a ratio of longer to shorter panel dimensions measured center to center of supports, not to exceed 8.
- (D) Rectangular with a ratio of longer to shorter panel dimensions measured center to center of supports, not to exceed 10.

Answer (A)

- If L (live load) > 0.75D (dead load) then
- (A) Maximum factored moment when full factored L on all spans
- (B) Pattern live loading using 0.75 factored L to determine maximum factored moment
- (C) Both of above
- (D) None of above

Answer (B)

- If L (live load) ≤0.75D (dead load) then
- (A) Maximum factored moment when full factored L on all spans
- (B) Pattern live loading using 0.75 factored L to determine maximum factored moment
- (C) Both of above
- (D) None of above

Answer (A)

Monthly Exam Reinforced Concrete Design II Subjects: Prestress Concrete and Slab Thickness

Stage: 4th Group A Time: 1 and 30 min Date: 4/5/2019

A Channel	Answe	r all questions		
A. Choose the correct a The minimum thicks	inswer use f. = 420 km	- duestions		
1. The minimum thicks (A) 90 mm	ness for flat slab at an			(20 Marks)
(A) 90 mm	(B) 100 mm	be less than:		
2. The minimum thickn (A) $\frac{\ell_n}{33}$	less for interior new 1.5	(C) 125 mm	(D) 150 mm	
(A) $\frac{\ell_{\eta}}{20}$	merior panel for	flat slab with drop panel	due to deflection cor	ntrol is:
3. The min	(B) $\frac{c_n}{30}$	(C) $\frac{\ell_n}{40}$	(D) $\frac{\ell_n}{36}$	
(A) 00	ness for exterior panel (4. (B) 100 mm	5 × 4) m for flat plat with	adaa baama daa ta	deflection control is:
(A) 90 mm	(B) 100 mm	(C) 250 mm	(D) 140 mm	deflection comports.
4. The minimum thi	ckness for exterior non	el for flat clab with de	on nonel and with	a adaa beams due to
deflection control	is:	ici ici ilat siao with th	op paner and with	reage ocams and to
(A) $\frac{\ell_n}{31}$		- 1-	/_	
	(B) $\frac{\ell_n}{30}$	(C) $\frac{\ell_n}{36}$	$(D)\frac{\ell_n}{28}$	
J. The minimum thick	tness for interior panel (6	× 7.2) m for flat slab wi	th drop panels due t	o deflection control is:
(A) 200 mm	(B) 150 mm	(C) 120 mm	(D) 100 mm	
B. Find the minimum	thickness for slab with be	eams ,use f _y = 420 MPa		(20 Marks)
1. Slab with beams (7	$.8 \times 7.8$) m clear span w	ith α _m = 3.4		
2. Slab with beams (6	5.1×5.2) m clear span w	ith $\alpha_m = 1.4$		
Q2:				N N TA 451
A. A simply supported	symmetrical I prestresse	ed beam, of span 12 m	and its cross section	n is carrying a live load
equal to 10 kN/m in	addition to its weight co	mpute following allowab	ole stress and compo	are it with ACI allowable
stress: Use $\gamma = 25 \text{ k}$	N/m^3 , $I = 4 \times 10^9 \text{ mm}^4$,	$A_c = 100 \times 10^3 \text{ mm}^2, C_t$	= C _b = 300 mm, Pi	= 800 kN, Pe = 600 kN,
(20 Marks)				
1. Top fiber stress at er	nds in initial stage is:		3	60 mm
(A) -5 MPa	(B) 1.5 MPa	(C) -3 MPa	(D) 4 MPa	
2. Bottom fiber stress	at mid span in final stage	is:		100 mm
(A)1.875 MPa	(B) - 3.25 MP		a (D) 1.13 M	Pa · ·
3. Losses in pretension		posttension concrete.		
	(B) Larger than.	(C) Same as.	(D) None of them	
(A) Smaller than.				
	praetraceed beam of st	an 12 m and its cross s	section is shown in	Figure, is carrying a service (20 Marks)
				(20 Marks)
load equals to 10 kl	v/m. Compute the requi	n weight plus prestressi	ng force only.	
a. Top fiber stress e	quals to zero under bear	all loade		1
Control of the Contro	reverse to zoro under	HH IOZUS.		A STATE OF THE STA
Use $\gamma_c = 24 \text{ kN/m}^3$,	$I = 11 \times 10^9 \text{ mm}^4, A_g =$	150000 mm.		1
				80 mm
				84
				+ 1
		Maria Cara	n is shown in Fig	ure, is carrying a service los
OZ. A contilever prest	ressed beam, of span 1	m and its cross section	JI IS SHOWN IN THE	ure, is carrying a service loa (20 Marks)
Q3: A camileve press	. Compute the required	prestressing forces for		du
equals to 10 kin/ii	ress equals to zero under	er beam weight plus pro	estressing torce or	ny.
a. Bottom fiber str	ress equals to zero undo 3 , $I = 18 \times 10^9 \text{ mm}^4$, A_8	$= 120000 \text{ mm}^2$.		
Use $\gamma_c = 24 \text{ kN/m}$, 1 = 18 × 10 mm, 14			T
				150 100
				1-1
				4 4 4

- 11: .10

(a) Slabs without drop panels as given in 8 2.4... 125 mm.
(b) Slabs with drop panels as given in 8.2.4...... 100 mm.

Table 8.3.1.1—Minimum thickness of nonprestressed two-way slabs without interior beams (mm)⁽¹⁾

	Witho	Without drop panels [3]			drop pan	4.08
		Exterior panels		Exterior panels		Interior
fp W	Without edge beams	With edge beams[4]	panels	Without edge beams	With edge beams[4]	panels
280	C, 33	1,36	7,36	f. 36	f. 40	f. 40
420	6.30	f _w 33	6,33	6,33	4,36	1,36
520	fw28	t _n /31	6-31	6,/31	6/34	£/34

Table 8.3.1.2—Minimum thickness of nonprestressed two-way slabs with beams spanning between supports on all sides

opp. DI			
0 ₀₄ ≤ 0.2	8.3.1.1 applies		(a)
0.2 ≤ α _{ph} ≤ 2.0	Greater of:	$\frac{\ell_s \left(0.8 + \frac{f_g}{1400}\right)}{36 + 2\beta \left(\alpha_{g_0} - 0.2\right)}$	(P)tuns
		125	(c)
a _{pto} ≥ 2.0	Greater of:	$\frac{\ell_s \left(0.8 + \frac{f_t}{1400}\right)}{36 + 9\beta}$	(4) ₍₂₎₁₈
	1	90	(6)

$$\begin{split} f_{ti} &= \frac{-P_I}{A} + \frac{P_I \times e \times C_t}{I} - \frac{M_g \times C_t}{I} \\ f_{bi} &= \frac{-P_I}{A} - \frac{P_I \times e \times C_b}{I} + \frac{M_g \times C_b}{I} \\ f_{ts} &= \frac{-P_e}{A} + \frac{P_e \times e \times C_t}{I} - \frac{M_g \times C_t}{I} - \frac{M_s \times C_t}{I} \\ f_{bs} &= \frac{-P_e}{A} - \frac{P_e \times e \times C_b}{I} + \frac{M_g \times C_b}{I} + \frac{M_s \times C_b}{I} \end{split}$$

Table 24.5.3.1—Concrete compressive stress limits immediately after transfer of prestress

Concrete compressive stress limits		
0.70fel		
0.60fel		

Table 24.5.4.1—Concrete compressive stress

imits at service ion	Concrete compressive stress
Load condition	limits
Prestress plus sustained load	0.45fc
	0.60%
Prestress plus total load	

Table 24.5.3.2—Concrete tensile stress limits immediately after transfer of prestress, without additional bonded reinforcement in tension zone

Location	Concrete tensile stress limits
Ends of simply-supported members	0.505.
All other locations	0.25√∫;

ne

Table 24.5.2.1—Classification of prestressed flexural members based on f_t

Assumed behavior	Class	Limits of f,	
Uncracked	Pul	$f_i \le 0.62\sqrt{f_i}$ $0.62\sqrt{f_i} < f_i \le 1.0\sqrt{f_i}$	
Transition between uncracked and cracked	T		
Cracked	c	f,>10\T:	

Pipestressed two-way slabs shall be designed as Class U with $f_i \succeq 0.50 \sqrt{f_i^2}$.

Time: 1 and 30 min

Q1

Typical Solution

A (20%)

1. Slab with beams (7.8
$$\times$$
 7.8) m clear span with $\alpha_m = 3.4$ > 2

$$h = \frac{\ell n(0.8 + \frac{fy}{3400})}{36+9\beta} \beta = \frac{\ell n}{Sn} = \frac{7.8}{7.8} = 1$$

$$h = \frac{\ell n(0.8 + \frac{\ell y}{3400})}{36+9\beta} \beta = \frac{\ell n}{sn} = \frac{7.8}{7.8} = 1$$

$$h = \frac{7800 \times (0.8 + \frac{420}{3400})}{36+9 \times 1} = 190.667 \text{ mm} > 90 \text{ mm O.K}$$
Use h = 200 mm

Use
$$h = 200 \text{ mm}$$

2. Slab with beams
$$(6.1 \times 5.2)$$
 m clear span with $\alpha_m = 1.4$

$$0.2 < \alpha_m = 1.4 < 2.0$$

$$h = \frac{\ell n \left(0.8 + \frac{f y}{1400}\right)}{36 + 5\beta \left(\alpha_{fm} - 0.2\right)} \quad \beta = \frac{\ell n}{\text{Sn}} = \frac{6.1}{5.2} = 1.17$$

$$h = \frac{6100 \times \left(0.8 + \frac{420}{1400}\right)}{36 + 5 \times 1.17 \times (1.4 - 0.2)} = 155.97 \text{ mm} > 125 \text{ mm O.k}$$

Use h = 160 mm ■

Q2:

A (20%)

B (20%)

$$C_t = 300 \text{ mm}, C_b = 450 \text{ mm}, e = 450 - 50 = 400 \text{ mm}$$

$$W_g = A \times \gamma$$

$$W_g = 130000 \times 10^{-6} \times 24 = 3.12 \text{ kN/m}$$

$$M_g = \frac{W_g \times \ell^2}{8} = \frac{3.12 \times 12^2}{8} = 56.16 \text{ kN.m}$$

$$M_s = \frac{W_s \times \ell^2}{8} = \frac{10 \times 12^2}{8} = 180 \text{ kN.m}$$

$$M_s = \frac{W_s \times \ell^2}{8} = \frac{10 \times 12^2}{8} = 180 \text{ kN.m}$$

$$f_t = \frac{-P}{-P} + \frac{P \times e \times C_t}{-P} - \frac{M_g \times C_t}{-P}$$

$$\begin{split} M_s &= \frac{W_s \times \ell^2}{8} = \frac{10 \times 12^n}{8} = 180 \text{ kN.m} \\ \text{a. Top fiber stress equals to zero under beam weight plus prestressing force only} \\ f_{ti} &= \frac{-P}{A} + \frac{P \times e \times C_t}{I} - \frac{M_g \times C_t}{I} \\ 0 &= \frac{-P \times 10^3}{130000} + \frac{P \times 10^3 \times 400 \times 300}{11 \times 10^9} - \frac{56.16 \times 10^6 \times 300}{11 \times 10^9} \\ &= -P - P \times 3 - 1.5316 \end{split}$$

$$0 = \frac{-P}{130} + \frac{P \times 3}{275} - 1.5316$$

$$P \times 3.2.167 \times 10^{-3} = 1.5316$$

$$P = \frac{1.5316}{3.2167 \times 10^{-3}}$$

b. Bottom fiber stress equals to zero under full load

b. Bottom liber stress equations
$$P \times P \times P \times C_b + M_g \times C_b + M_s \times C_b$$

$$P = 476.14 \text{ kf V}$$
Bottom fiber stress equals to zero under full load
$$f_{bs} = \frac{-P}{A} - \frac{P \times e \times C_b}{I} + \frac{M_g \times C_b}{I} + \frac{M_s \times C_b}{I}$$

$$0 = \frac{-P \times 10^3}{130000} - \frac{P \times 10^3 \times 400 \times 450}{11 \times 10^9} + \frac{56.16 \times 10^6 \times 450}{11 \times 10^9} + \frac{180 \times 10^6 \times 450}{11 \times 10^9}$$

$$-P \quad P \times 9 + 2 \cdot 297 + 7.363$$

$$0 = \frac{-P}{130} - \frac{P \times 9}{550} + 2.297 + 7.363$$

$$P \times 0.0241 = 9.66$$

$$\therefore P = \frac{9.66}{0.0241} = 400.8 \text{ kN} \blacksquare$$

Al-Elem University College nege of Engineering
Livil Engineering Department

Monthly Exam Reinforced Concrete Design II Time: 1 and 30 iii
Subjects: Prestress Concrete and Slab Thickness Date: 4/5/2019

Stage: 4th Group A Time: 1 and 30 min

Q3: (20%)

$$C_t = 600 \text{ mm}, C_b = 400 \text{ mm}, e = 450 \text{ mm}$$

$$W_g = A \times \gamma$$

$$W_g = 120000 \times 10^{-6} \times 24 = 2.88 \text{ kN/m}$$

$$M_g = \frac{W_g \times \ell^2}{2} = \frac{2.88 \times 10^2}{2} = 144 \text{ kN.m}$$

$$f_{bi} = \frac{-P_i}{A} + \frac{P_i \times e \times C_b}{I} - \frac{M_g \times C_b}{I}$$

$$\begin{split} W_g &= 120000 \times 10^{-6} \times 24 = 2.88 \text{ kN/m} \\ M_g &= \frac{W_g \times \ell^2}{2} = \frac{2.88 \times 10^2}{2} = 144 \text{ kN.m} \\ \text{Bottom fiber stress equals to zero under beam weight plus prestressing force only} \\ f_{bi} &= \frac{-P_1}{A} + \frac{P_1 \times e \times C_b}{1} - \frac{M_g \times C_b}{1} \\ 0 &= \frac{-P \times 10^3}{120000} + \frac{P \times 10^3 \times 450 \times 400}{18 \times 10^9} - \frac{144 \times 10^6 \times 400}{18 \times 10^9} \\ 0 &= \frac{-P}{120} + \frac{P}{100} - 3.2 \\ P \times 1.667 \times 10^{-3} = 3.2 \end{split}$$

$$0 = \frac{-P}{120} + \frac{P}{100} - 3.2$$

$$P \times 1.667 \times 10^{-3} = 3.2$$

$$P = \frac{3.2}{1.667 \times 10^{-3}}$$

Typical Solutions

Q.1 (40 %): A flat plate floor has a thickness equals to 190 mm, Q.2 (60 %): The flat plate slab of 200 mm total thickness center each way. Check the adequacy of the slab in resisting punching shear at a typical interior column, and provide shear reinforcement, if needed. The floor will carry a total factored load of 450 kN and the factored slab moment resisted by the column is 20 kN.m. Use effective depth = 150 mm, f_y = 420 MPa, and $f_c = 35 \text{ MPa}$

Solution:

Solution:
$$b_1 = C_1 + d = 350 + 150 = 500 \text{ mm}$$

$$b_2 = C_2 + d = 350 + 150 = 500 \text{ mm}$$

$$b_0 = 2b_1 + 2b_2 = 2 \times 500 + 2 \times 500 = 2000 \text{ mm}$$

$$C_{AB} = \frac{b_1}{2} = \frac{500}{2} = 250 \text{ mm}$$

$$J_c = 2\left(\frac{b_1d^3}{12} + \frac{db_1^3}{12}\right) + 2(b_2d)\left(\frac{b_1}{2}\right)^2$$

$$J_c = 2\left(\frac{500 \times 150^3}{12} + \frac{150 \times 500^3}{12}\right) + 2 \times (500 \times 150) \times \left(\frac{500}{2}\right)^2$$

$$J_c = 1.278 \times 10^{10} \text{ mm}^4$$

$$v_{ug} = \frac{V_u}{b_0 \cdot d} = \frac{450 \times 10^3}{2000 \times 150} = 1.5 \text{ MPa}$$

$$v_c = \text{min.} \begin{cases} 0.33 \sqrt{f_c'} = 1.952 \text{ MPa} \\ 0.17 \left(1 + \frac{2}{\beta}\right) \sqrt{f_c'} = 3.017 \text{ MPa} \end{cases}$$

$$0.083 \left(2 + \frac{\alpha_s d}{b_o}\right) \sqrt{f_c'} = 2.455 \text{ MPa}$$

$$\therefore v_c = 1.952 \text{ MPa}$$

$$\phi v_e = 0.75 \times 1.952 = 1.464 \text{ MPa}$$

$$\gamma_f = \frac{1}{1 + \left(\frac{2}{3}\right) \sqrt{\frac{b_1}{b_2}}} = \frac{1}{1 + \left(\frac{2}{3}\right) \sqrt{\frac{500}{500}}} = 0.6$$

$$\gamma_v = 1 - \gamma_f = 1 - 0.6 = 0.4$$

$$v_{u,AB} = v_{ug} + \frac{v_u M_{sc} C_{AB}}{J_c} = 1.5 + \frac{0.4 \times 20 \times 10^6 \times 250}{1.278 \times 10^{10}} = 1.656 \text{ MPa}$$

$$v_u = 1.656 \times \phi v_e = 1.464 \text{ MPa} \text{ Not O.K}$$

$$\therefore \text{ Shear reinforcement is required.}$$

$$v_u \leq \phi 0.5 \sqrt{f_c'}$$

$$v_u = 1.656 \text{ MPa} < 0.75 \times 0.5 \times \sqrt{35} = 2.2185 \text{ MPa} \text{ O.K.}$$

$$v_c = 0.17 \sqrt{f_c'} = 0.17 \times \sqrt{35} = 1.005 \text{ MPa}$$

$$v_s = \frac{V_u}{\phi} - v_c = \frac{1.656}{0.75} - 1.005 = 1.203 \text{ MPa}$$

$$v_s = \frac{A_v f_y}{b_0 s}$$

$$\Rightarrow A_v = \frac{v_s b_0 s}{f_y} = \frac{1.203 \times 2000 \times 75}{420} = 429.64 \text{ mm}^2$$

and 160 mm effective depth is carried by 500 mm square column 6.0 m on centers in each direction. A factored load of 21.97 kN/m2 and a factored slab moment resisted by the column is 25 kN.m must be transmitted from the slab to a typical edge column about an axis parallel to the edge of slab. Determine spacing of closed stirrups of vertical shear reinforcement if required. Use Ø = 12 mm for closed stirrups, f, = 420 MPa and fc' = 30 MPa.

reinforcement if required. Use
$$\emptyset=12$$
 mm for closed stirrups, $f_y=420$ MPa and $fc'=30$ MPa.
$$\frac{\text{Solution:}}{b_1=C_1+\frac{d}{2}}=500+80=580 \text{ mm}$$

$$b_2=C_2+d=500+160=660 \text{ mm}$$

$$b_0=2b_1+b_2=2\times580+660=1820 \text{ mm}$$

$$c_{AB}=\frac{2(b_1d_0^{(b_2)})}{2(b_1d_0^{(b_2)})}=184.84 \text{ mm}$$

$$J_c=2\left[\frac{b_1d^3}{12}+\frac{db_3}{12}+(b_1d)\left(\frac{b_2}{2}-c_{AB}\right)^2\right]+(b_2d)c_{AB}^2$$

$$J_c=1.1259\times10^{10} \text{ mm}^4$$

$$V_u=21.97\times(6\times3.25-0.58\times0.66)=420 \text{ kN}$$

$$v_{ug}=\frac{V_u}{b_0\cdot d}=\frac{420\times10^3}{1820\times160}=1.442 \text{ MPa}$$

$$0.33\sqrt{f_c'}=1.807 \text{ MPa}$$

$$0.17\left(1+\frac{2}{\beta}\right)\sqrt{f_c'}=2.793 \text{ MPa}$$

$$0.083\left(2+\frac{\alpha_s}{b_0}\right)\sqrt{f_c'}=2.108 \text{ MPa}$$

$$\therefore \phi v_c=0.75\times1.8067=1.355 \text{ MPa}$$

$$\gamma_f=\frac{1}{1+\left(\frac{2}{3}\right)\sqrt{\frac{b_1}{b_2}}}=\frac{1}{1+\left(\frac{2}{3}\right)\sqrt{\frac{580}{660}}}=0.615$$

$$\gamma_v=1-\gamma_f=1-0.615=0.385$$

$$v_{u_iAB}=v_{ug}+\frac{\gamma_v \frac{M_{SC}}{b_0}}{J_c}=1.442+\frac{0.385\times25\times10^6\times184.84}{1.1259\times10^{10}}$$

$$v_{u_iAB}=1.6 \text{ MPa}$$

$$v_u=1.6\times \text{ MPa}$$

$$v_u=1.6\times \text{ MPa}$$

$$v_u=1.6\times \text{ MPa}$$

$$v_u=1.6 \text{ MPa}$$

$$v_u=1.6 \text{ MPa} < 0.75\times0.5\sqrt{30}=2.05 \text{ MPa} \text{ O.K.}$$

$$v_c=0.17\sqrt{f_c'}=0.17\times\sqrt{30}=0.931 \text{ MPa}$$

$$v_s=\frac{v_u}{\phi}-v_c=\frac{1.6}{0.75}-0.931=1.202 \text{ MPa}$$

$$S=\frac{Avf_y}{b_0v_y}=\frac{678.6\times420}{1820\times1.202}=130>\frac{d}{2}=80 \text{ mm} \text{ not O.K.}$$

Use S = 80 mm

 $A_v = \frac{\pi}{4} \times 12^2 \times 2_{\text{No. of Legs}} \times 3_{\text{No. of Beams}}$ $A_v = 678.6 \text{ mm}^2$ $A_v = 678.6 \text{ mm}^2$

Q.1 (40 %): for the transverse interior frame (B) of the flat Q.2(40 %): Check the two way shear action (punching plate with edge beam shown in figure below by using direct

1. Longitudinal distribution of the static moment at factored

2. Lateral distribution of the moment at exterior support. Slab thickness = 210 mm, d = 170 mm

 $q_u = 18 \text{ kN/m}^2$

All columns = $500 \times 500 \text{ mm}$ All edge beams = $300 \times 600 \text{ mm}$

fc'= 28 MPa, $f_y = 420 \text{ MPa}$ Solution

1-Longitudinal distribution

$$q_u=18 \text{ kN/m}^2$$
, $\ell_2 = \left(\frac{5}{2} + \frac{4.5}{2}\right) = 4.75 \text{ m}$
 $\ell_n = 4 - 0.5 = 3.5 \text{ m} > 0.65 \times 4 = 2.6 \text{ m}$
 $M_0 = \frac{q_u \ell_n^2 \ell_2}{8} = \frac{18 \times 3.5^2 \times 4.75}{8} = 130.92 \text{ kN.m}$

2-Lateral distribution

For exterior support

Negative moment = 39.276 kN.m

 $\alpha_f = 0$ Find Bt: Calculate C:

 $C = \sum (1 - 0.63 \frac{x}{y}) (\frac{x-y}{3})$

 $C1 = \left(1 - 0.63 \times \frac{300}{600}\right) \left(\frac{300^3 \times 600}{3}\right) + \left(1 - 0.63 \times \frac{210}{390}\right) \left(\frac{210^3 \times 390}{3}\right)$ $C1 = 4.495 \times 10^9 \text{ mm}^4$

 $C2 = \left(1 - 0.63 \times \frac{300}{390}\right) \left(\frac{300^3 \times 390}{3}\right) + \left(1 - 0.63 \times \frac{210}{690}\right) \left(\frac{210^3 \times 690}{3}\right)$ $C2 = 3.5306 \times 10^9 \text{ mm}^4 \text{ Use larger } \therefore C = 4.495 \times 10^9 \text{ mm}^4$

Is = $\frac{\ell_2 \times h_{slab}^3}{12} = \frac{4750 \times 210^3}{12} = 3.6658 \times 10^9 \text{ mm}^4$ $\beta_t = \frac{c}{2l_S} = \frac{4.495 \times 10^9}{2 \times 3.6658 \times 10^9} = 0.613$ -Exterior C.S coefficient% = $100 - 10\beta t + 12\beta t \left(\alpha_{f1} \frac{\ell_2}{\ell_1}\right) \times \left(1 - \frac{\ell_2}{\ell_1}\right)$

-Exterior C.S coefficient % = $100-10 \times 0.613 = 93.87\% = 0.9387$ -Exterior Mc.s = $0.9387 \times 39.276 = 36.868 \text{ kN.m}$

-Exterior Mm.s = 39.276 -36.868 = 2.408 kN.m

shear) only around an interior column (300×300) mm in a flat plate floor of a span (6.0×6.0) m. Find the area of vertical shear reinforcement if required. Assume d = 190 mm. Total $q_a = 19$ kPa (including slab weight), $f_c^* = 25$ MPa, $f_y = 414 \text{ MPa}$.

Solution:

 $(b_0) = (300 + 190) \times 4 = 1960 \text{ mm}$ $Vu = 19 \times (6 \times 6 - 0.49 \times 0.49) = 679.438 \text{ kN}$ $v_{ug} = \frac{Vu}{b_o \cdot d} = \frac{679.438 \times 10^3}{1960 \times 190} = 1.824 \text{ MPa}$ $v_c = min.$ $\begin{cases} 0.33 \sqrt{25} = 1.65 \text{ MPa} \\ 0.17 \left(1 + \frac{2}{1}\right) \times \sqrt{25} = 2.55 \text{ MPa} \end{cases}$ $0.083 \left(2 + \frac{40 \times 190}{1960}\right) \times \sqrt{25} = 2.439 \text{ MPa}$

: $v_c = 1.65 \text{ MPa}$ $\Phi v_c = 0.75 \times 1.65 = 1.2375 \text{ MPa} < v_a = 1.824 \text{ MPa}$

Not O.K. : Shear reinforcement is required

 $v_u = 1.824 \text{ MPa} < 0.75 \times 0.5 \times \sqrt{25} = 1.875 \text{ MPa} \text{ O.K.}$

 $\begin{aligned} v_c &= 0.17 \, \sqrt{f_c'} = 0.17 \, \times \sqrt{25} = 0.85 \, \text{MPa} \\ v_s &= \frac{v_u}{\varphi} - v_c = \frac{1.824}{0.75} - 0.85 = 1.582 \, \text{MPa} \end{aligned}$

= 711.5 mm²

 $v_s = \frac{A_v f_y}{b_0 s}$ Where $s = \frac{d}{2} = \frac{190}{2} = 95 \text{ mm}$ $A_v = \frac{v_s b_0 s}{c} = \frac{1.582 \times 1960 \times 95}{414} = 711.5 \text{ mm}^2$

The required area of vertical shear reinforcement

Q.3 (40 %): Check the two way shear action (punching shear) only around a corner column (400 × 200) mm in flat plate floor of span (7.0×7.0) m. Also find the spacing of closed stirrups of vertical shear reinforcement if required.

Loading condition: $V_u = 18 \text{ kN/m}^2$, slab thickness h =215 mm, d = 160 mm, use Ø10 mm for closed stirrups, fy= 414 MPa, fc' = 35 MPa

Solution:

$$(b_0) = (400 + 80) + (200 + 80) = 760 \text{ mm}$$

 $Vu = 18 \times (3.7 \times 3.6 - 0.48 \times 0.28) = 237.34 \text{ kN}$

$$v_{ug} = \frac{Vu}{b_o \cdot d} = \frac{237.34 \times 10^3}{760 \times 160} = 1.951 \text{ MPa}$$

$$v_c = \min. \begin{cases} 0.33 \sqrt{35} = 1.952 \text{ MPa} \\ 0.17 \left(1 + \frac{2}{2}\right) \times \sqrt{35} = 2.011 \text{ MPa} \\ 0.083 \left(2 + \frac{20 \times 160}{760}\right) \times \sqrt{35} = 3.049 \text{ MPa} \end{cases}$$

$$v_c = 1.952 \text{ MPa}$$

 $v_c = 1.952 \text{ MPa}$ $\phi_{V_c} = 0.75 \times 1.952 = 1.464 \text{ MPa} < v_u = 1.951 \text{ MPa}$ Not O.K.

.. Shear reinforcement is required

$$v_u = 1.951 \text{ MPa} < 0.75 \times 0.5 \times \sqrt{35} = 2.218 \text{ MPa } 0. \text{ K}.$$

$$v_c = 0.17 \sqrt{f_c'} = 0.17 \times \sqrt{35} = 1.005 MPa$$

$$v_s = \frac{v_u}{\phi} - v_c = \frac{1.951}{0.75} - 1.005 = 1.596 \text{ MPz}$$

$$v_s = \frac{A_v f_y}{h_v f_y}$$
 Where $A_v = 2 \times 2 \times \frac{\pi}{4} \times 10^2 = 314.16 \text{ mm}^2$

$$\begin{aligned} \mathbf{v_u} &= 1.951 \text{ MPa} < 0.75 \times 0.5 \times \sqrt{35} = 2.218 \text{ MPa O. Fe} \\ \mathbf{v_c} &= 0.17 \sqrt{f_c'} = 0.17 \times \sqrt{35} = 1.005 \text{MPa} \\ \mathbf{v_s} &= \frac{\mathbf{v_u}}{\Phi} - \mathbf{v_c} = \frac{1.951}{0.75} - 1.005 = 1.596 \text{ MPa} \\ \mathbf{v_s} &= \frac{A_v f_y}{b_o \text{ s}} \text{ Where } \mathbf{A_v} = 2 \times 2 \times \frac{\pi}{4} \times 10^2 = 314.16 \text{ mm}^2 \\ \mathbf{S} &= \frac{A_v f_y}{\mathbf{v_s b_o}} = \frac{314.16 \times 414}{1.596 \times 760} = 107.23 \text{ mm} \\ \mathbf{S}_{\text{max}} &= \frac{d}{2} = \frac{160}{2} = 80 \text{ mm use } \mathbf{S} = 80 \text{ mm} \text{ m} \end{aligned}$$

Note about calculating A.

 $A_v = \frac{2}{No.0}$ Legs to resist punching $\times 2_{No.0}$ integral beams \times $\frac{\pi}{4} \times 10^2 = 314.16 \text{ mm}^2$ sleb shear reinforcemen (first line of stirrup legs)

Typical Solutions

Q.1(20%): Find the minimum thickness of a slab for an interior panel due to deflection control for the following: Use $f_y = 420$ MPa. (60000 psi).

a- Flat slab with drop panels (6 \times 5.5) m clear span.

b- Flat plate (4.5×3.2) m clear span.

c- Slab with beams (8 \times 7.8) m clear span with $\alpha_m = 3.5$

d- Slab without drop panels (6.5 \times 5.3) m clear span with α_{m}

e-Slab with beams (6 \times 5.2) m clear span with α_m = 1.3 Solution:

Note: All slab thicknesses have been rounded up to nearest

a- Flat slab with drop panels (6 × 5.5) m clear span.

h =
$$\frac{\ell_n}{36}$$
 = $\frac{6000}{36}$ = 166.67 mm > 100 mm O.K
Use h ≈ 170 mm ■

b- Flat plate (4.5 × 3.2) m clear span.

h =
$$\frac{\ell_{\rm n}}{33}$$
 = $\frac{4500}{33}$ = 136.4 mm > 125 mm O.K
Use h ≈ 140 mm ■

c-Slab with beams (8 × 7.8) m clear span with $\alpha_m = 3.5$

$$\begin{split} \alpha_{m} &= 3.5 > 2.0 \\ h &= \frac{\ell_{n} \left(0.8 + \frac{f_{y}}{1400} \right)}{36 + 9\beta} \beta = \frac{\ell_{n}}{S_{n}} = \frac{8}{7.8} = 1.025 \\ h &= \frac{8000 \times \left(0.8 + \frac{420}{1400} \right)}{36 + 9 \times 1.025} = 194.6 \text{ mm} > 90 \text{ mm O.K} \\ \text{Use } h &\approx 200 \text{ mm} \ \blacksquare \end{split}$$

d- Slab without drop panels (6.5 \times 5.3) m clear span with $\alpha_m^{=}$

 α_{m} = 0.11 < 0.2 go to ACI Code Table 8.3.1.1 h = $\frac{\ell_n}{33} = \frac{6500}{33} = 196.9 \text{ mm} > 125 \text{ mm O.K}$ Use h $\approx 200 \text{ mm}$

e-Slab with beams (6 \times 5.2) m clear span with $\alpha_m \! = \! 1.3$

0.2 <
$$\alpha_m = 1.3 < 2.0$$

$$h = \frac{\ell_m \left(0.8 + \frac{fy}{1400}\right)}{36 + 5\beta \left(\alpha_{fm} - 0.2\right)} \beta = \frac{\ell_n}{s_n} = \frac{6}{52} = 1.154$$

$$h = \frac{6000 \times \left(0.8 + \frac{420}{1400}\right)}{36 + 5 \times 1.154 \times (13 - 0.2)} = 155.8 \text{ mm} > 125 \text{ mm O.K}$$
Use $h \approx 160 \text{ mm}$

Q.2 (30 %): for the transverse interior frame (B) of the flat plate with edge beams shown in figure below by using direct design method find:

1. Longitudinal distribution of the static moment at factored loads.

Lateral distribution of the moment at exterior Support.

Slab thickness = 150 mm, d = 115 mm $q_u = 16 \text{ kN/m}^2$ All columns = $500 \times 500 \text{ mm}$ All edge beams = 300 × 500 mm fc'= 28 MPa, f, = 420 MPa

Solution

1-Longitudinal distribution

$$\begin{aligned} &q_o = 16 \text{ kN/m}^2 \text{ , } \ell_2 = \left(\frac{7.5}{2} + \frac{7.5}{2}\right) = 7.5 \text{ m} \\ &\ell_n = 5 - 0.5 = 4.5 \text{ m} > 0.65 \times 5 = 3.25 \text{ m} \\ &M_o = \frac{q_u \ell_n^2 \ell_2}{8} = \frac{16 \times 4.5^2 \times 7.5}{8} = 303.75 \text{ kN.m} \end{aligned}$$

2-Lateral distribution

Exterior Negative Moment = 91.125 kN.m

 $\alpha_f = 0$

Find Bt:

 $\beta_t = \frac{\dot{c}}{2I_S}$

Calculate C:

 $C = \sum \left(1 - 0.63 \frac{x}{y}\right) \left(\frac{x^3 y}{3}\right)$

 $C1 = \left(1 - 0.63 \times \frac{300}{500}\right) \left(\frac{300^3 \times 500}{3}\right) + \left(1 - 0.63 \times \frac{150}{350}\right) \left(\frac{150^3 \times 350}{3}\right)$ $C1 = 3.086 \times 10^9 \text{ mm}^4$

 $\begin{aligned} &C2 = \left(1 - 0.63 \times \frac{300}{350}\right) \left(\frac{300^3 \times 350}{3}\right) + \left(1 - 0.63 \times \frac{150}{650}\right) \left(\frac{150^3 \times 650}{3}\right) \\ &C2 = 2.07 \times 10^9 \text{ mm}^4 \text{ Use larger} \therefore \text{ C} = 3.086 \times 10^9 \text{ mm}^4 \end{aligned}$

Is $=\frac{\ell_2 \times h_{slab}^3}{12} = \frac{7500 \times 150^3}{12} = 2.109 \times 10^9 \text{ mm}^4$ $\beta_t = \frac{C}{2I_S} = \frac{3.086 \times 10^9}{2 \times 2.109 \times 10^9} = 0.7316$

-Exterior C.S coefficient% = $100 - 10\beta t + 12\beta t \left(\alpha_{f_1} \frac{\ell_2}{\ell_1}\right) \times \left(1 - \frac{\ell_2}{\ell_1}\right)$

-Exterior C.S coefficient% =100 - 10×0.7316 = 92.684 % Negative moment at C.S = 0.92684 × 91.125 = 84.45 kN.m

Negative moment at M.S = 91.125 − 84.45 = 6.675 kN.m ■

Q.3 (40 %): for the longitudinal exterior frame (A) of the flat plate without edge beam shown in figure below by using direct design method find:

- 1. Longitudinal distribution of the static moment at factored loads.
- 2. Lateral distribution of the moment interior panel (column and middle strip moments at negative and positive moments).

Slab thickness = 250 mm, d = 215 mm

 $q_u = 17 \text{ kN/m}^2$

All columns = 450×450 mm fc'= 28 MPa, f_y = 420 MPa

Solution

1-Longitudinal distribution

 $q_u=17 \text{ kN/m}^2$, $\ell_2=\left(\frac{7}{2}+\frac{0.45}{2}\right)=3.725 \text{ m}$ $\ell_n = 7 - 0.45 = 6.55 \text{ m} > 0.65 \times 7 = 4.55 \text{ m}$ $M_0 = \frac{q_u \ell_n^2 \ell_2}{4} = \frac{17 \times 6.55^2 \times 3.725}{4} = 339.6 \text{ kN.m}$

2. Lateral Distribution

For interior panel

Interior Negative moment = 220.74 kN.m

Negative moment at CS - 075 × 220.74 = 165.55 kN.n Negative moment at MS = 220.74 - 165.55= 55.2 kN.m

Positive moment = 118.86 kN.m

Posttive moment at CS=3.6 × 118.86 = 71.316 kN.m Positive moment at MS = 118.86 -71.316 = 47.54 kN

Table 8.10.5.1-Portion of interior negative M_e in

Contract of the last of the la	DESCRIPTION OF THE PARTY OF THE	19/12	N1	
	0.5	1.0	2.0	
aptitle	0.75	0.75	075	
0	0.77	0.75	0.45	

	Portion of po	100	
		10	3.0
44/9/19	0.00	0.60	0,40
0	0.00	THE REAL PROPERTY.	0.45
>1.0	0.90	0.75	0.4

The minimum thickness of an exterior panel in a flat plate without edge beams (f_y equals 280 MPa) is taken as: a) $\ell_y/28$ b) $\ell_y/30$ c) $\ell_y/30$ d) $\ell_y/36$
The minimum thickness of an interior panel in a flat slab with drop panels (f_y equals 420 MPa) is taken as: a) $f_y/33$ b) $f_y/34$ c) $f_y/36$ d) $f_y/40$
The minimum thickness of an exterior panel in a flat slab with drop panels and without edge beams (f_y equals 420 MPa) is taken as: a) $f_y/31$ b) $f_y/33$ c) $f_y/36$ d) $f_y/40$
In Direct Design Method, I _b (the moment of inertia of the effective beam) is based on the: a) Effective concrete section b) Gross concrete section c) Cracked concrete section d) Transformed concrete section
A circular column, that has a diameter equals to 500 mm, shall be treated as square column that has a length equals to: a) 400 mm b) 440 mm c) 445 mm d) 450 mm
Enlarged head of a supporting column of a flat slab is technically known as a) Supporting end of the column b) Top of the column c) Capital d) Drop panel
In equivalent frame method, k will be a) <4 b) ≤4 c) = 4 d) >4
Stiffness of equivalent column (modified column stiffness) is a) Greater than stiffness of column b) Equal to stiffness of column c) Lesser than stiffness of column d) None of these
In equivalent frame method, the fixed end moments for a uniform load (w) will be a) $< w\ell^2/12$ b) = $w\ell^2/12$ c) $> w\ell^2/12$ d) None of these
Which of the following relations is correct? a) $v_s = v_c - v_u$ b) $v_s = v_u$ c) $v_s = v_u / v_c$ d) None of these
Which of the following relation is correct? a) Design shear strength is greater than required shear strength strength c) Design shear strength is lesser than required shear strength strength
A reinforced concrete slab is 200 mm thick. The diameter of the stirrups that cannot be used is of a) 8 mm b) 10 mm c) 12 mm d) 16 mm
The shear perimeter (b _a) for (300×400) mm corner column in a flat plate, with 150 mm effective depth, is a) 2000 mm b) 1000 mm c) 850 mm d) 700 mm
In punching shear, the first critical section will be (a) At d/2 from the face of the column (b) At d/2 from the face of the drop panel (c) At d/2 from the face of the drop panel (d) All the above
Which of the following is not a characteristic feature of yield lines? a) Yield lines are always parallel b) Yield lines sometimes be parallel with supports (c) Yield lines sometimes be nonparallel with supports d) Yield lines may be intersect
In orthotropic slab a) The resisting moments are equal in all directions c) The resisting moments are different in all directions d) The resisting moments are equal in two perpendicular directions d) The resisting moments are equal in two perpendicular directions
Loss of prestress could be due to a) Elastic expansion of concrete b) Shrinkage of steel c) Cracks in concrete d) Friction
Disadvantage of prestressed concrete are a) High labor costs b) Higher cost of materials c) More complicated formwork may be required d) All the above
In Class U prestressed concrete (a) $f_t \ge 0.62 \sqrt{f_c'}$ b) $f_t \le 0.62 \sqrt{f_c'}$ c) $0.62 \sqrt{f_c'} < f_t \le 1.0 \sqrt{f_c'}$ d) $f_t < 0.62 \sqrt{f_c'}$
Sustained loads mean a) Dead load b) Live load c) Total load d) All the above