
TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

43

C++ Standard Library

Input/Output with files
C++ provides the following classes to perform output and input of characters to/from files:

• ofstream: Stream class to write on files

• ifstream: Stream class to read from files

• fstream: Stream class to both read and write from/to files.

These classes are derived directly or indirectly from the classes istream, and ostream. We have already used

objects whose types were these classes: cin is an object of class istream and cout is an object of class ostream.
Therfore, we have already been using classes that are related to our file streams. And in fact, we can use our file

streams the same way we are already used to use cin and cout, with the only difference that we have to associate
these streams with physical files. Let's see an example:

// basic file operations
#include <iostream>
#include <fstream>
using namespace std;

int main () {
 ofstream myfile;
 myfile.open ("example.txt");
 myfile << "Writing this to a file.\n";
 myfile.close();
 return 0;
}

[file example.txt]
Writing this to a file

This code creates a file called example.txt and inserts a sentence into it in the same way we are used to do with

cout, but using the file stream myfile instead.

But let's go step by step:

Open a file

The first operation generally performed on an object of one of these classes is to associate it to a real file. This
procedure is known as to open a file. An open file is represented within a program by a stream object (an

instantiation of one of these classes, in the previous example this was myfile) and any input or output operation
performed on this stream object will be applied to the physical file associated to it.

In order to open a file with a stream object we use its member function open():

open (filename, mode);

Where filename is a null-terminated character sequence of type const char * (the same type that string literals

have) representing the name of the file to be opened, and mode is an optional parameter with a combination of the

following flags:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

44

ios::in Open for input operations.

ios::out Open for output operations.

ios::binary Open in binary mode.

ios::ate
Set the initial position at the end of the file.

If this flag is not set to any value, the initial position is the beginning of the file.

ios::app
All output operations are performed at the end of the file, appending the content to the current content

of the file. This flag can only be used in streams open for output-only operations.

ios::trunc
If the file opened for output operations already existed before, its previous content is deleted and

replaced by the new one.

All these flags can be combined using the bitwise operator OR (|). For example, if we want to open the file

example.bin in binary mode to add data we could do it by the following call to member function open():

ofstream myfile;
myfile.open ("example.bin", ios::out | ios::app | ios::binary);

Each one of the open() member functions of the classes ofstream, ifstream and fstream has a default mode that

is used if the file is opened without a second argument:

class default mode parameter

ofstream ios::out

ifstream ios::in

fstream ios::in | ios::out

For ifstream and ofstream classes, ios::in and ios::out are automatically and respectively assumed, even if a

mode that does not include them is passed as second argument to the open() member function.

The default value is only applied if the function is called without specifying any value for the mode parameter. If
the function is called with any value in that parameter the default mode is overridden, not combined.

File streams opened in binary mode perform input and output operations independently of any format
considerations. Non-binary files are known as text files, and some translations may occur due to formatting of
some special characters (like newline and carriage return characters).

Since the first task that is performed on a file stream object is generally to open a file, these three classes include

a constructor that automatically calls the open() member function and has the exact same parameters as this

member. Therefore, we could also have declared the previous myfile object and conducted the same opening

operation in our previous example by writing:

ofstream myfile ("example.bin", ios::out | ios::app | ios::binary);

Combining object construction and stream opening in a single statement. Both forms to open a file are valid and
equivalent.

To check if a file stream was successful opening a file, you can do it by calling to member is_open() with no
arguments. This member function returns a bool value of true in the case that indeed the stream object is
associated with an open file, or false otherwise:

if (myfile.is_open()) { /* ok, proceed with output */ }

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

45

Closing a file

When we are finished with our input and output operations on a file we shall close it so that its resources become

available again. In order to do that we have to call the stream's member function close(). This member function

takes no parameters, and what it does is to flush the associated buffers and close the file:

myfile.close();

Once this member function is called, the stream object can be used to open another file, and the file is available
again to be opened by other processes.

In case that an object is destructed while still associated with an open file, the destructor automatically calls the
member function close().

Text files

Text file streams are those where we do not include the ios::binary flag in their opening mode. These files are

designed to store text and thus all values that we input or output from/to them can suffer some formatting

transformations, which do not necessarily correspond to their literal binary value.

Data output operations on text files are performed in the same way we operated with cout:

// writing on a text file
#include <iostream>
#include <fstream>
using namespace std;

int main () {
 ofstream myfile ("example.txt");
 if (myfile.is_open())
 {
 myfile << "This is a line.\n";
 myfile << "This is another line.\n";
 myfile.close();

 }
 else cout << "Unable to open file";
 return 0;
}

[file example.txt]
This is a line.
This is another line.

Data input from a file can also be performed in the same way that we did with cin:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

46

// reading a text file
#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main () {
 string line;
 ifstream myfile ("example.txt");
 if (myfile.is_open())
 {
 while (! myfile.eof())
 {
 getline (myfile,line);
 cout << line << endl;

 }
 myfile.close();

 }

 else cout << "Unable to open file";

 return 0;
}

This is a line.
This is another line.

This last example reads a text file and prints out its content on the screen. Notice how we have used a new

member function, called eof() that returns true in the case that the end of the file has been reached. We have

created a while loop that finishes when indeed myfile.eof() becomes true (i.e., the end of the file has been

reached).

Checking state flags

In addition to eof(), which checks if the end of file has been reached, other member functions exist to check the

state of a stream (all of them return a bool value):

bad()

Returns true if a reading or writing operation fails. For example in the case that we try to write to a file

that is not open for writing or if the device where we try to write has no space left.

fail()

Returns true in the same cases as bad(), but also in the case that a format error happens, like when an

alphabetical character is extracted when we are trying to read an integer number.

eof()

Returns true if a file open for reading has reached the end.

good()

It is the most generic state flag: it returns false in the same cases in which calling any of the previous

functions would return true.

In order to reset the state flags checked by any of these member functions we have just seen we can use the
member function clear(), which takes no parameters.

get and put stream pointers

All i/o streams objects have, at least, one internal stream pointer:

ifstream, like istream, has a pointer known as the get pointer that points to the element to be read in the next

input operation.

