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Chapter Three   

Numerical Methods 
 

 

At the end of this chapter, you should be able to: 

 

- Know the types of error. 

- Learn using Newton’s and Secant method of solving 

Algebraic equations. 

- Solve numerical integration and differentiation. 

- Learn using numerical methods to solve ordinary 

and partial differential equations.   

- Find an approximate value using polynomial 

interpolation.  
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3.1 Numerical Methods 

To explore complex systems, physicists, engineers, financiers and 

mathematicians require computational methods since mathematical models are 

only rarely solvable algebraically. Numerical methods, based upon sound 

computational mathematics, are the basic algorithms underpinning computer 

predictions in modern systems science. Such methods include techniques for 

simple optimisation, interpolation from the known to the unknown, linear algebra 

underlying systems of equations, ordinary differential equations to simulate 

systems, and stochastic simulation under random influences. Topics covered are: 

the mathematical and computational foundations of the numerical approximation 

and solution of scientific problems; simple optimisation; vectorisation; 

clustering; polynomial and spline interpolation; pattern recognition; integration 

and differentiation; solution of large scale systems of linear and nonlinear 

equations; modelling and solution with sparse equations; explicit schemes to 

solve ordinary differential equations; random numbers; stochastic system 

simulation. 

3.2 Characteristics of Numerical Methods 

1. The solution procedure is iterative, with the accuracy of the solution 

improving with each iteration. 

2. The solution procedure provides only an approximation to the true, but 

unknown, solution. 

3. An initial estimate of the solution may be required. 

4. The algorithm is simple and can be easily programmed. 

5. The solution procedure may occasionally diverge from rather than 

converge to the true solution. 
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3.3 Types of error in Numerical Computation   

I. Initial error/Error of the problem:  

       These are involved in the statement of problem itself. In fact, the statement 

of a problem generally gives an idealized model and not the exact picture of the 

actual phenomena. For example, in the calculation of the value of earth’s 

gravitational force g by simple pendulum, the experiment is based upon certain 

axioms: such as (i) bob is weight less (ii) the motion of the bob is linear, that is, 

in a straight line; which are not true, in fact.  

 

II. Residual error or truncation error:  

This error occurs when mathematical functions like  

 

whose infinite series expansion exist, are used in the calculations. Because, in 

calculating the value of such function for an assigned value of x, only a finite 

number of terms can be taken, an error get introduced for not considering the 

remaining terms. 

III. Rounding error/ Round-off error:  

 When the rational numbers like 1/3; 22/7; 5/9; 8/9 etc, whose decimal 

representation involve infinite number of digits, are involved in our calculations, 

we are forced to take only a few number of  digits from their decimal expression 

and thus an error named round-off error gets involved. There are universal rules 

for rounding a number as rounding rules. 
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3.4 Numerical Solution of Algebraic Equations  

3.4.1 Newton’s Method  

Newton’s method, also known as Newton–Raphson’s method, is an iteration method for 

solving equations where f is assumed to have a continuous derivative. The method is commonly 

used because of its simplicity and great speed.  

The underlying idea is that we approximate the graph of f by suitable tangents. Using an 

approximate value obtained from the graph of f, we let be the point of intersection of the x-axis 

and the tangent to the curve of f at x0 (see the figure below).  

 

 

The general equation is: 
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Example (1): (Square Root) set up a Newton iteration for computing the square 

root x of a given positive number C and apply it to C = 2. 

 Solution. 

Let’s take   0)(0 22 CxxfCxCx  xxf 2)(   

The numerical solution starts from 10 x , using Eq. 1:  

n nx  )( nxf  )( nxf   1nx  Error* 

1 1 -1 2 1.5 0.333 

2 1.5 0.25 3 1.416667 0.05882 

3 1.416667 0.006944 2.833333 1.414216 0.00173 

4 1.414216 6.01E-06 2.828431 1.414214 1.50182E-06 

5 1.414214 4.51E-12 2.828427 1.414214 1.12764E-12 

6 1.414214 0 2.828427 1.414214 0 

 

Note:    Error = 
1

1





n

nn

x

xx
 

 

The solution is exact to n=6 ( 0)( xf  and Error = 0).  
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Example (2): Find the positive solution of .sin2 xx   

Solution.  Setting xxxf sin2)(    xxf cos21)(   

The numerical solution starts from 20 x , using Eq. 1:  

 

n nx  )( nxf  )( nxf   1nx  Error 

1 2.00000 0.18141 1.83229 1.90100 0.05208 

2 1.90100 0.00904 1.64846 1.89551 0.00289 

3 1.89551 0.00003 1.63808 1.89549 0.00001 

4 1.89549 0.00000 1.63805 1.89549 0.00000 

 

 

Example (3): Solve the equation 01)( 3  xxxf  

Solution. The first derivate of the above equation is: 

013)( 2  xxf  

Let’s start the numerical solution from 10 x  

n nx  )( nxf  )( nxf   1nx  Error 

1 1.00000 1.00000 4.00000 0.75000 0.33333 

2 0.75000 0.17188 2.68750 0.68605 0.09322 

3 0.68605 0.00894 2.41198 0.68234 0.00543 

4 0.68234 0.00003 2.39676 0.68233 0.00002 

5 0.68233 0.00000 2.39671 0.68233 0.00000 
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3.4.2 Secant Method  

Newton’s method is very powerful but has the disadvantage that the derivative 

may sometimes be a far more difficult expression than f itself and its evaluation 

therefore computationally expensive. This situation suggests the idea of replacing 

the derivative with the difference quotient 

 
 

Accordingly, Eq. 1 becomes: 

 

 
 

 

 

 

The figure below illustrates the concept of Secant method: 
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Example (4): Repeat example (2) using Secant method where 20 x and  

9.11 x :  

 

Solution.  

 

xxxf sin2)(   

 

Let’s start the numerical solution from 20 x  and 9.11 x , using Secant formula: 

 

n 1nx  nx  )( 1nxf  )( nxf  1nx  Error 

1 2 1.9 0.181405 0.0074 1.895747 0.002243254 

2 1.9 1.895747 0.0074 0.000414 1.895495 0.000132987 

3 1.895747 1.895495 0.000414 1.08E-06 1.895494 3.46403E-07 

 

 

 

NOTE: Only 3 iterations are needed to get a solution in this method in relation 

to Newton’s method. 

 

 

 

 

3.5 Numerical Integration and Differentiation  

In many applications, the engineer often encounters integrals that are very difficult or even 

impossible to solve analytically. For example, the error function: 

dtexerf

x

t




0

22
)(

  

 and others cannot be evaluated by the usual methods of calculus. We then need methods from 

numerical analysis to evaluate such integrals. We also need numerics when the integrand of 

the integral to be evaluated consists of an empirical function, where we are given some 

recorded values of that function. Methods that address these kinds of problems are called 
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methods of numeric integration. 

Numeric integration means the numeric evaluation of integrals: 

 

Geometrically, J is the area under the curve of  f  between a and b (as shown in the figure 

below), taken with a minus sign where f is negative. 

 

3.5.1 Rectangular Rule: 

Numeric integration methods are obtained by approximating the integrand f  by functions that 

can easily be integrated. The simplest formula, the rectangular rule, is obtained if we subdivide 

the interval of integration bxa  into n  subintervals of equal length 2)( abh  and 

in each subinterval approximate f  by the constant )( *

jxf , the value of f  at the midpoint 

*

jx of the jth subinterval (as shown in the figure below). Then f is approximated by a step 

function (piecewise constant function), the n  rectangles in the figure have the areas

hxfhxf nj )(,.......,)( **
 . Thus, the rectangular rule is expressed as: 
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3.5.2 Trapezoidal Rule: 

The concept of this method is illustrated in the figure blow. As one may note, the trapezoidal 

rule is generally more accurate since the area under curve of f  between a  and b  is 

approximated by n  trapezoids of areas. 

 

 

where nabh )(   
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Example (5): Evaluate  

dxeJ x




1

0

2

, with  n = 10 

Using trapezoidal method:  

 

Solution.  

nabh )(  = (1-0)/10 = 0.1 

Thus, according to trapezoidal rule, J value is: 

 

 )1(2/1....)2.0()1.0()0(2/11.0

1

0

2

ffffdxeJ x  


 

To find the values of the sub-functions in the above equation, the following table 

is constructed: 

 

j 
jx  

2

jx  )( 2

jxExp   

0 a= 0 0 1 

1 0.1 0.01 0.99005 

2 0.2 0.04 0.960789 

3 0.3 0.09 0.913931 

4 0.4 0.16 0.852144 

5 0.5 0.25 0.778801 

6 0.6 0.36 0.697676 

7 0.7 0.49 0.612626 

8 0.8 0.64 0.527292 

9 0.9 0.81 0.444858 

10 b=1 1 0.367879 

Sum of the shaded numbers only 6.778168 

 



12 

 

Therefore, now: 

 

7462.0367879.0*2/177816.61*2/11.0
table in the values  theof sum

1

0

2













 



dxeJ x

 

 

3.5.3 Simpson’s Rule: 

Piecewise constant approximation of  f  led to the rectangular rule, piecewise 

linear approximation to the trapezoidal rule, and piecewise quadratic 

approximation will lead to Simpson’s rule, which is of great practical importance 

because it is sufficiently accurate for most problems, but still sufficiently simple. 

 

 

 

 

 

 

where mabh 2)(   
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Example (6): Repeat example (5) using Simpson’s rule. 

 

dxeJ x




1

0

2

, with  n = 2m = 10 

Thus, according to Simpson’s rule, J value is: 

 

 )1()....3.0(4)2.0(2)1.0(4)0(
3

1.0
1

0

2

fffffdxeJ x  


 

To find the values of the sub-functions in the above equation, the following table 

is constructed: 

 

j 
jx  

2

jx  )( 2

jxExp   )(4 2

jxExp   )(2 2

jxExp   

0 a= 0 0 1   

1 0.1 0.01 0.99005 3.960199  

2 0.2 0.04 0.960789  1.921579 

3 0.3 0.09 0.913931 3.655725  

4 0.4 0.16 0.852144  1.704288 

5 0.5 0.25 0.778801 3.115203  

6 0.6 0.36 0.697676  1.395353 

7 0.7 0.49 0.612626 2.450506  

8 0.8 0.64 0.527292  1.054585 

9 0.9 0.81 0.444858 1.779432  

10 b=1 1 0.367879   

Sum of the shaded numbers only 14.96107 6.075804 
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From the table: 

 

7468.0367879.0075804.696.141
3

1.0

table in the   values theof sum

1

0

2













 



  dxeJ x

 

 

 

Example (7): Find the value of J and check your solution:  

dxxfJ 

100

40

)(  

where the values of x  and )(xf are given in the table below: 

x  40 50 60 70 80 90 100 

)(xf  44 63 79 91 104 115 128 

 

Solution.   

The solution is straightforward. First, from the table 10h   

  5380128)10479(2)1159163(444
3

10
)(

100

40

  dxxfJ  

Checking: 

Two methods can be used to check the solution:  

1.  Plot the data and estimate manually the area under the curve as shown in the 

figure below:  

5320)20*20(*3.13 


boxoneofarea

J  
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2. Plot the data and fit a curve to them as shown in the figure below. This gives 

the following equation:  

667.919663.400471.00002.0)( 23  xxxxf  

100

40

234

100

40

667.91
2

966.4

3

0047.0

4

0002.0
)( 








  xxxxdxxfJ  

         J  5389. 2 
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3.6 Numerical Methods for Differential Equations  

This section is about numerics for ODEs. We start with first-orer ODEs and 

discuss, in Sec. 3.6.1, methods for first-order ODEs. The main initial idea is that 

we can obtain approximations to the solution of such an ODE at points that are a 

distance h apart by using the first two terms of Taylor’s formula from calculus. 

We use these approximations to construct the iteration formula for a method 

known as Euler’s method. While this method is rather unstable and of little 

practical use, it serves as a pedagogical tool and a starting point toward 

understanding more sophisticated methods such as the Runge–Kutta method and 

its variant the Runga–Kutta–Fehlberg (RKF) method, which are popular and 

useful in practice.  

3.6.1 Methods for First-Order ODEs 

A. Euler method (or Euler–Cauchy method) 

We know that an ODE of the first order is of the form 0),,( yyxf  and can often 

be written in the explicit form ),( yxfy  . Euler method to solve the first order 

differential equation is based on Taylor series:  

.......)(
2

)()()(
2

 xy
h

xyhxyhxy    

For small h the higher powers in the above equation are very small. Dropping all 

of them gives the crude approximation: 

 

The general formula for Euler method can be written as:  
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Example (8): Apply Euler’s method to the following equation, choosing h = 0.2 

and computing y at x = 1. Compare the results with the exact solution. 

 

 

0)0(,  yyxy  

 

Solution:  

 

Here, yxyxf ),(  . Therefore, Euler general formula can be expressed as: 

 

)1()(2.01  nnnn yxyy  

 

 

To find y (5), we construct the following table: 

 
Table 1 

n xn yn yn+1 from Eq. 1 

0 0 0 0 

1 0.2 0 0.04 

2 0.4 0.04 0.128 

3 0.6 0.128 0.274 

4 0.8 0.274 0.489 

5 1 0.489 0.7856 

 

 

The solution is  y(1)=0.489 

 

Comparing the results with the exact solution: 

 

The exact solution of  yxy    is 1)(  xexy x
. Therefore, one can compare 

the results by computing the error: 

 

n 
yn  

(from Table 1) 

yn (Excat) 

1)(  xexy x
 

Error 

Excatntablefromn yy 1  

0 0 0 0 

1 0 0.021403 0.021403 

2 0.04 0.091825 0.051825 

3 0.128 0.222119 0.094119 

4 0.274 0.425541 0.151541 

5 0.489 0.718282 0.229282 
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B. Runge–Kutta Methods (RK Methods) 

 

A method of great practical importance and much greater accuracy than that of 

the Euler method is the classical Runge–Kutta method of fourth order, which we 

call briefly the Runge–Kutta method. 

 

where: 

 

 

Example (9): Apply the Runge–Kutta method to the initial value problem in 

Example 8, choosing h = 0.2  as before, and computing five steps. 

 

Table 2 

n xn k1 k2 k3 k4 yn+1 from RK Eqn 

0 0 0 0 0.02 0.022 0.0444 

1 0.2 0.0214 0.04428 0.068708 0.071151 0.09851 

2 0.4 0.091818 0.098364 0.1282 0.131184 0.1646 

3 0.6 0.222106 0.164421 0.200863 0.204508 0.245323 

4 0.8 0.425521 0.245104 0.289615 0.294066 0.343917 

5 1 0.718251 0.34365 0.398015 0.403452 0.464341 

 

The solution is y(1) = 0.718251 

 

 

Comparing the results with the exact solution: 

 

n 
yn  

(from Table 2) 

yn (Excat) 

1)(  xexy x
 

Error 

Excatntablefromn yy 1  

0 0 0 0 

1 0.0214 0.021403 2.76E-06 

2 0.091818 0.091825 6.74E-06 

3 0.222106 0.222119 1.23E-05 

4 0.425521 0.425541 2.01E-05 

5 0.718251 0.718282 3.07E-05 
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3.6.2 Methods for Second-Order Equations 

Euler method  

Methods for single first-order ODEs can be extended to second-order differential 

equation simply by considering y and y  instead of y only. Accordingly,  

                                           yhyy nn
1  

),,(1 nnnnn yyxfhyy 
  

  

Example (10): Solve the initial value problem for a damped mass–spring system 

 

 
by the Euler method for systems with step for x from 0 to 1 (where x is time). 

 

 

Solution: 

 

 )1(1  yhyy nn  

)2(),,(1 
 nnnnn yyxfhyy  

 

From the differential equation:  

 
yyyyxf nn 75.02),,( ,1   

 

Using the above equations, one can construct the following table:  

 
n xn yn y  

1ny  (Eq. 1) 1

ny  (Eq. 2) 

0 0 3.00 -2.500 2.500 -1.950 

1 0.2 2.50 -1.950 2.110 -1.545 

2 0.4 2.11 -1.545 1.801 -1.244 

3 0.6 1.80 -1.244 1.552 -1.016 

4 0.8 1.55 -1.016 1.349 -0.843 

5 1 1.35 -0.843 1.181 -0.708 

 

From the table, the solution is :  35.1)1( y and  843.0)1( y  

 

 

y 

https://i.stack.imgur.com/j8dcG.png
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3.7 Interpolation   

The interpolation is a process to find an approximate value of a function f(x) for 

an x between different x-values at which the values of f(x) are given.  

 

Many methods can be used to implement an interpolation process. Among those 

are:  

 

1. Lagrange Interpolation 

2. Newton’s Divided Difference Interpolation  

3. Equal Spacing: Newton’s Forward Difference Formula 

4. Equal Spacing: Newton’s Backward Difference Formula 

5. Central Difference  

 

These methods will be discussed and illustrated by way of examples as below. 

 

 

Lagrange Interpolation  

 

The general formula for this method is: 

 

 
 

where:  
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Example (11): (linear Interpolation) If you have two data points (x0, f0) and (x1, 

f1). Find a linear relationship to determine the value of any point (x, 1p ) in 

between, using Lagrange general formula:  

 

 

 
 

Solution:  

From Lagrange general formula:  

 

)1()()()()(
1

0

11001  fxLfxLfxLxp kk  

 

)(0 xL and )(1 xL  in Eq.1  can be expressed as:  

 

)(

)(
)(

00

0
0

xl

xl
xL     and 

)(

)(
)(

11

1
1

xl

xl
xL   

Hence, Eq. 1 becomes:  

 

)2(
)(

)(

)(

)(
)( 1

11

1
0

00

0
1  f

xl

xl
f

xl

xl
xp  

where  

)()( 10 xxxl   

)()( 1000 xxxl   

)()( 01 xxxl   

)()( 0111 xxxl   

 

 

Thus,  

 

1

01

0
0

10

1
1

)(

)(

)(

)(
)( f

xx

xx
f

xx

xx
xp









  

 

Substitute in Eq. 2 
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Example (12): Compute 2.9ln  from 1972.29ln   and 2513.25.9ln  , using 

linear Lagrange interpolation. 

 

Solution: 

 

1972.29 00  fx   

?3.9 1  px  

2513.25.9 11  fx  

 

As in example 11, from the general Lagrange formula, one can find: 

 

 

1

01

0
0

10

1
1

)(

)(

)(

)(
)( f

xx

xx
f

xx

xx
xp









  

 

2188.2)2.9(2513.2*
)95.9(

)92.9(
1972.2*

)5.99(

)5.92.9(
)2.9( 11 









 pp  

 

Example (13): (Quadratic Interpolation) compute 2.9ln  from 1972.29ln   , 

2513.25.9ln   and  3979.211ln   using Lagrange interpolation. 

 

Solution:  

221100

2

0

1 )()()()()( fxLfxLfxLfxLxp kk   

 

2

22

2
1

11

1
0

00

0
1

)(

)(

)(

)(

)(

)(
)( f

xl

xl
f

xl

xl
f

xl

xl
xp    

 

2

1202

10
1

2101

20
0

2010

21
1

))((

))((

))((

))((

))((

))((
)( f

xxxx

xxxx
f

xxxx

xxxx
f

xxxx

xxxx
xp














  

 

2

1202

10
1

2101

20
0

2010

21
1

))((

))((

))((

))((

))((

))((
)2.9( f

xxxx

xxxx
f

xxxx

xxxx
f

xxxx

xxxx
p














  

 

3979.2*
)5.911)(911(

)5.92.9)(92.9(
2513.2*

)115.9)(95.9(

)112.9)(92.9(
1972.2*

)119)(5.99(

)112.9)(5.92.9(
)2.9(1














p

2192.2)2.9(1 p  
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Newton’s Divided Difference Interpolation 

 

Newton’s divided difference interpolation formula is:  

 
 

This method is illustrated in Example 13.  

 

Example (14): Compute f(9.2) from the values shown in the following table. 

 

 
Solution:  

 

To find ],[ 10 xxf  , ],,[ 210 xxxf , ],....,[ 0 nxxf  in Newton’s interpolation formula, 

we need to construct a difference table as follows:    

 

 
 

The values in the table are calculated as follows:  

 

First column:  

 

117783.0
89

079442.2197225.2
],[ 1 




jj xxf  
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108134.0
95.9

197225.2251292.2
],[ 1 




jj xxf  

 

097735.0
5.911

251292.2397895.2
],[ 1 




jj xxf  

 

 

Second column:  

 

006433.0
85.9

117783.0108134.0
],,[ 21 




 jjj xxxf  

 

0052.0
911

108134.0097735.0
],,[ 21 




 jjj xxxf  

 

 

Third column:  

 

 

000411.0
811

006433.00052.0
],...,[ 3 




jj xxf  

 

 

The values needed in Newton’s interpolation formula are circled:  
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Equal Spacing: Newton’s Forward Difference Formula 

 

Newton’s formula is valid for arbitrarily spaced nodes as they may occur in 

practice in experiments or observations. However, in many applications the data 

may be regularly spaced — for instance, in measurements taken at regular 

intervals of time. 

 

This means: 0x , 1x  = hx 0 , hxx 212   …etc.  

 

In this case, Newton’s Forward Difference Formula can be used to carry out an 

interpolation process. For a function )(xf , this formula can be expressed as: 

 

00

2

00
!

)1)......(1(
.....

!2

)1(
)( f

n

nrrr
f

rr
frfxf n





  

 

 

Note here that the first forward difference of f at xj is defined by:  

 

 

 

 

 

 

 

 

 

 

 

and, finally, 
h

xx
r

j
  

 

Example (15): Compute cosh (0.56) from Newton’s forward difference formula 

and the four values in the following table. 
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Solution: 

 

We compute the forward differences as shown in the table below.  

 

 
 

The values we need are circled.  

 

In the general formula, we have r = (0.56-0.5)/0.1= 0.6. So that the general 

formula gives: 
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Equal Spacing: Newton’s Backward Difference Formula 

 

Instead of forward-sloping differences (explained in example 15), we may also 

employ backward-sloping differences. 

 

Therefore, the first backward difference of  f  at xj is defined by :  

 
 

 

A formula similar to the forward formula but involving backward differences is 

Newton’s backward difference interpolation formula 

 

 

00

2

00
!

)1)......(1(
.....

!2

)1(
)( f

n

nrrr
f

rr
frfxf n





  
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Example (16): Compute a 7 digits-value of the Bessel function )(0 xj for x = 1.72 

from the four values in the following table, using (a) Newton’s forward formula, 

(b) Newton’s backward formula.  

 

 
 

Solution:  

 

 
 

 

 
 


