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Chapter Two   

Solution Methods for Models 

Producing PDEs 
 

 

At the end of this chapter, you should be able to: 

 

- Classify the PDEs. 

- Learn how to solve PDEs using different methods.  

- Analyse engineering problems that produce PDEs.  

- Apply different boundary conditions to find the final 

solution of PDEs. 
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2.1 Classification and Characteristics of Linear PDEs  

The general linear equation of second order can be expressed  
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where the coefficients P, Q, R depend only on x, y, whereas S depends on x, y, z,

yz   and yz  . It is important to note here that if P, Q, R depend on z, Eq. 1 will 

be considered non-linear. Furthermore, if S = 0, Eq. 1 will be called a 

homogenous PDE. 

The terms involving second derivatives are of special importance, since they 

provide the basis for classification of type of PDE. By analogy, Eq. 1 can be 

written as: 

       )2(2 22  dycxybax  

Eq. 2 can be classified for constant coefficients when P, Q, R take values a, b, c, 

respectively. The discriminant for the case of constant coefficients a, b, c is 

defined as: 

)3(42  acb  

Accordingly, when: 
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Typical examples occurring in engineering for the above cases are: 

- Fick’s second law of diffusion: 
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This equation is parabolic since 0  (a = 1, b = 0 and c = 0): 
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- Laplace’s equation of heat conduction:  
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This equation is elliptic since 4  (a = 1, b = 0 and c = 1) 

- Newton’s law of wave motion: 
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This equation is hyperbolic since 4  (a = 1, b = 0 and c =  ). 

 

2.2 Methods of solving PDEs 

Three methods will be covered in this course to solve the PDEs: 

1. Separation of variables 

2. Combination of variables  

3. Laplace Transformation  

 

2.2.1 Separation of Variables  
 

This is the most widely used method in applied mathematics, and its strategy is 

to break the dependent variable into component parts, each depending (usually) 

on a single independent variable; invariably, it leads to a multiple of particular 

solutions. 

 

Example (1): Find the possible solutions for Fick’s second law of diffusion using 

separation of variables method: 
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where C is a solute concentration and D is the solute diffusion coefficient through 

a media, and it is assumed constant.   
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Solution: 
 

As a first step, we will assume that the concentration is a product of two separate 

functions each of which depends on one independent variable:  

 
)1()()(),(  tTxXtxC  

 

In other words, Eq. 1 represents the solution of Fick’s second law of diffusion. 

From this solution, the derivatives can be found, thus: 
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Substitute the above derivatives in the PDE gives:  
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Since both T and X depend on a different independent variable, the ratios ( TT   

and XXD  ) must equal to a constant to satisfy the equality in the equation, i.e., 
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There are three possible cases to solve Eq.3: 

 

Case 1: the value of the constant is zero  

 

In this case Eq. 3 becomes:    
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Now, 00 


T
T

T
 (by integration) 1AT  ; where A1 is the integration 

constant. 

 

and 00 


X
X

X
D (by integration) 322 AxAXAX  ; where A2 and 

A3 are the integration constants. 

 

According to the above, the solution (Eq.1) is: 

 

)(),( 321 AxAAtxC   
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Case 2: the value of the constant is a positive number ( 2 ): 

 

So,  dt
T
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1
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The second order differential equation can be solved using superposition 

theorem: 
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Compare the roots to the Table 1 below, the solution of Eq. 4 is: 
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According to case 2, the solution (Eq.1) is: 
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Case 3: the value of the constant is a negative number (- 2 ): 
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2
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Again, using superposition method: 
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Compare the roots to the Table 1 below, the solution of Eq. 5 is: 

 

x
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D
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

sincos)( 32   

 

According to case 3, the solution (Eq.1) is: 
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2
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NOTES: 

 

1. This example illustrates using separation of variable method, in general, to 

solve PDEs.   

 

2. Always, there are three possible solutions, depending on the value of the 

constant appeared in Eq. 3.  

 

3.  Determining the real solution needs to apply the boundary conditions and find 

which one is physically possible as will be seen in the next example.   

 
 

  

H.W 1 (deadline on 4th of March 2019): 

 

Solve the following PDEs using separation of variable method:  
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x 

2.2.2 Engineering problems producing PDEs 

 

Example (2):  Consider a steel cylinder with a small length to radius ratio. The 

cylinder is thermally stable at T = 20 °C. In a heat treatment process, suddenly 

the cylinder is immersed in an oil bath such that both end are kept at T = 0 °C 

during the process. Find the temperature distribution at any point along the 

cylinder, using the appropriate assumptions?  
 

 

Assumptions: 
1. Heat transfer occurs only along the cylinder (i.e. no heat transfer in 

 the radial or the angle direction but only in the x-direction).  

2. The process is unsteady –state.  

3. There is no heat generation.  

 

Analysis:  

 

Energy balance around an element with r , and x gives: 
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Take into account the proposed assumptions, the above equation reduces to: 
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and under the following conditions: 

 

I.C:      at t = 0    TC = 20 °C       or          TC (x,0) = 20 °C   

B.C 1:  at x = 0   TC = 0 °C         or          TC (0,t) = 0 °C 

B.C 2:  at x= L   TC = 0 °C         or          TC (L,t) = 0 °C 

 

Mathematical solution of Eq.1: 

 

Eq. 1 is a PDE and can be solved using separation of variables method (exactly 

as we did in the previous example for Fick’s second law of diffusion). This gives 

the following solution: 

 

)().( tTxXTC     and      constant
X

X

T

T






  
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Now, we will try the three possible solutions and test them using the I.C and B.Cs: 

 

Case 1: the value of the constant is zero  

 

This gives the following solution:  

 

)(),( 321 AxAAtxTC   

 

The solution can be written as:  

 

                                *

2

*

1),( AxAtxTC     ;  where 
21

*

1 AAA   and 31

*

2 AAA   

 

Now, applying B.C 1 and B.C 2:  

 

 B.C 1:  zeroAA  *

2

*

200  

   B.C 2:  zeroALA  *

1

*

1 00  

 

It is clear from the above results that when the constant = 0, the solution is 

physically impossible.  

 
 

Case 2: the value of the constant is a positive number ( 2 ): 
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Now, applying B.C 1 and B.C 2:  

 

B.C 1:  
*

2
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              B.C 2:  
LL
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



 

 *

2

*

10  

 

Applying the BCs suggests that 0*

2

*

1̀  AA  and, again, this situation is impossible physically.  

 

 

Case 3: the value of the constant is a negative number (-
2 ): 
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The solution can be written as:  

 

                    )sincos(),( *

2
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2
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C
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
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*
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*

2 AAA   

 

Now, applying B.C 1 and B.C 2:  

 

                                                  B.C 1:  
*

1̀0 A  

                                                  B.C 2:  LA



sin0 *

2  

Now, B.C 2 suggests either 0*

2 A (which is impossible) or 0sin L



which is possible 

when 



nL  where n = 0 ,1, ,2 ,3  4 , …….  

 

Thus, from B.C 2:  
L

n
nL











  and )(

L
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  . Substitution of these terms in 

the general solution gives: 
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
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
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 
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The above equation can be expressed as a series:  
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Now, it is necessary to find the value of 
*

nA . This constant can be found by applying I.C: 

 

 seriessineFourier.sin20
2
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0
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Let’s take L = 10 cm, this means: 
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n
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Example (3):  Repeat Example 2, using the following conditions: 

 

t

T

x

T CC
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

1
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I.C:      at    t = 0          TC = 10 x2                 or          TC (x,0) = 10 x2 

B.C 1:   at   x = 0          TC = 0 °C          or          TC (0,t) = 0 °C 

B.C 2:   at   x= L          TC = 0 °C          or          TC (L,t) = 0 °C 

 

SOLUTION: 

 

The solution is exactly as in Example 2, but the analysis of case 3 will be different since the 

initial condition is different: 

 

Case 3: the value of the constant is a negative number (-
2 ): 

 

)sincos(),( 321

2

xAxAeAtxT t

C






  
 

 

Again, the solution can be written as:  

 

                    )sincos(),( *

2

*

1

2

xAxAetxT t

C






  
;  where 21

*

1 AAA   and 31

*

2 AAA   

 

Now, applying B.C 1 and B.C 2:  

 

                                                  B.C 1:  
*

1̀0 A  

                                                  B.C 2:  LA



sin0 *

2  

Now, B.C 2 suggests either 0*

2 A (which is impossible) or 0sin L



which is possible 

when 



nL  where n = 1, 2 ,3, 4 , …….  

 

Thus, from B.C 2:  
L

n
nL











  and )(

L

n
  . Substitution of these terms in 

the general solution gives: 

 



11 

 

Integration by part 


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
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
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
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


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L

n
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t
L

n
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
















 




sin),(

2

*
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The above equation can be expressed as a series:  

 

)1(sin),(
1

*

2

























n

t
L

n
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L

n
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

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Now, it is necessary to find the value of 
*

nA . This constant can be found by applying I.C: 

 

 seriessineFourierdxx
L

n
x

L
Awherex

L

n
Ax

L

n

n

n  




















 0

2*

1

*2 .sin10
2

;sin10:I.C


 

Let’s take L = 10 cm, this means: 

 

tablebelowtheinshownaspartbynintegratio;.
10

sin)10(2.0

10

0

2*

 







 dxx

n
xAn


  

                                                                                                 







































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* 10
20cos

10
20cos
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10002.0







 n
n

n
n

n
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 1cos
10

4cos
2000

3

* 
















 





n

n
n

n
An

 

 

 

Substitute *

nA in Eq. 1, the final solution is: 

 

 

 



















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













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

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
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





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3

sin1cos
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2

n

t
L

n
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L

n
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n
n
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
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
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
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x
n


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




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
 

20 x 
x

n

n









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

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
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x
n

n
















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sin
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
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x
n

n
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

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

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

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
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cos
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


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0
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
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
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
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
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
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

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
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n

n
x

n

n
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n
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








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Example (4): The faces of a thin square copper plate ( 1010 cm2) are perfectly 

insulated. The upper side is kept at 20 °C and the other sides are kept at 0 °C. 

Find the steady-state temperature ),( yxTP  in the plate (solve the Laplace equation 

given in page 3). 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

Analysis:  

The general heat transfer equations in a solid body: 

 

)1(
1

2

2

2

2

2

2





















t

T

K

q

z

T

y

T

x

T PPPP




 

 

Since the problem is a 2-D heat transfer in a solid at steady-state condition,               

Eq. 1 reduces to:  

 

)2(0
2

2

2

2











y

T

x

T PP
 

 

and under the following conditions: 

   

B.C 1:   at  x = 0    ,  TP = 0 °C       or       TP (0, y) = 0 °C 

B.C 2:   at  x =10   , TP = 0 °C       or       TP (10, y) = 0 °C 

B.C 3:   at  y = 0    , TP = 0 °C       or      TP (x, 0) = 0 °C 

B.C 4:   at  y = 10  , TP = 20 °C     or      TP (x,10) = 20 °C 

 

 

 

 

SOLUTION: 

 

Assumptions: 

1. Two-dimensional heat transfer (only in x 

and y-directions). 

2. No heat generation. 

3. steady-state heat transfer. 
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Mathematical solution of Eq.2: 

 

Using the separation of variables method gives: 

 

)3()().(),(  yYxXyxTP     

 

The derivatives can be found, thus: 

 

YX
x

TP 



2

2

  and   YX
y

TP 



2

2

 

 

Substitute the above derivatives in the PDE (Eq.2) gives:  

 

Y

Y

X

X 



 

Since both X and Y depend on a different independent variable, the ratios ( XX   

and YY  ) must equal to a constant to satisfy the equality in the equation, i.e., 

 

                                )4(





constant
Y

Y

X

X
 

 

As in the previous examples, there are three possible cases: 

 

 

Case 1: the value of the constant is zero  

 

In this case Eq. 4 becomes:    

 

0





Y

Y

X

X
 

Now, 00 


X
X

X
 (by integration) 211 AxAXAX  ; where A1 and A2 

are the integration constants. 

 

and 00 


 Y
Y

Y
(by integration) 433 AyAYAY  ; where A3 and A4 

are the integration constants. 

 

According to the above, the solution (Eq.2) is: 

 

))((),( 4321 AyAAxAyxTP   
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Applying the boundary conditions: 

 
                                                  B.C 1:  0)(0 2432  AAyAA  

                                                  B.C 2:  0))(10(0 1431  AAyAA  

 

Again, the solution is not physically possible.  

 

Case 2: the value of the constant is a positive number ( 2 ): 

 

In this case Eq. 4 becomes:    

 

2





Y

Y

X

X
 

Now, 022 


XX
X

X
  (2nd ODE) 

The second order differential equation can be solved: 

 

Thus,   mmXX 00 222  

 

Compare the roots to the Table 1 given in page 5, the solution is: 

 
xx eAeAxX   21)(  

 

For Y variable:  

 

 immYY  00 222 yAyAyY  cossin)( 43   

 

According to the above, the solution (Eq.2) is: 

 

)cossin)((),( 4321 yAyAeAeAyxT xx

P   
 

 

Applying the boundary conditions: 

 
                               B.C 1:  0)cossin)((0 214321  AAyAyAAA   

                               B.C 2: 0)cossin)((0 10

2

10

143

10

2

10

1     eAeAyAyAeAeA  

 

To satisfy B.C 1 and 2, A1 and A2 must be zero and that gives impossible physical 

solution. 
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Case 3: the value of the constant is a negative number ( 2 ) 

 

In this case Eq. 4 becomes:    

 

2





Y

Y

X

X
 

Now, 022 


XX
X

X
  (2nd ODE) 

The second order differential equation can be solved: 

 

Thus,  immXX  00 222  

 

Compare the roots to the Table 1 given in page 5, the solution is: 

 

xAxAxX  cossin)( 21   

 

For Y variable:  

 

  mmYY 00 222 yy eAeAyY   43)(  

 

According to the above, the solution (Eq.2) is: 

 

             )5())(cossin(),( 4321   yy

P eAeAxAxAyxT   

 

Applying the boundary conditions yields,  

 

                               B.C 1:  0))(0(0 2432   AeAeAA yy   

                               B.C 2:  10))(10sin(0 431   neAeAA yy    

 

Thus, Eq.5 becomes: 

))(
10

sin(),( 10
4

10
31

y
n

y
n

P eAeAx
n

AyxT


 

  

 

Or,  

 
















 y
n

y
n

P eAeAx
n

yxT 10*

2
10*

1
10

sin),(



; where 31

*

1 AAA   and 41

*

2 AAA   
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From B.C 3: 

 

  *

2

*

1

*

2

*

10 AAAA   

 

Now,  ),( yxTP  equation can be written as: 

 

)6(
10

sin),( 1010*

1 














 y
n

y
n

P eex
n

AyxT



 

 

210
sinhSince

1010
y

n
y

n

ee
y

n







  , Eq. 6 can be expressed as: 

 

)7(
10

sinh
10

sin2),( *

1  y
n

x
n

AyxTP


 

 

Eq. 7 can be expressed as a series of n: 

 

 

)8(
10

sinh
10

sin2),(
1

*  y
n

x
n

AyxT
n

nP


 

 

Re-arrange Eq. 8:  

 

)9(
10

sin)
10

sinh2(),(
1

*  x
n

y
n

AyxT
n

nP


 

 

Now, apply B.C 4: 

 

x
nn

A
n

n
10

sin)10
10

sinh2(20
1

* 
  

 

Comparing the above equation to Fourier sine series, 
*

nA  can be found: 

 

dxx
nn

An
10

sin20
10

2
10

10
sinh2

10

0

* 
  
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10

0

*

10
cos

40
10

10
sinh2 








 x

n

n

n
An






  

 

 
 










n

n
nAn

n

n
A nn

sinh

1cos
20

1cos
40

10
10

sinh2 **



  

 

 

Now substitute 
*

nA  in Eq. 9:  

 

 

 
x

n
y

n

n

n
nyxT

n

P
10

sin.
10

sinh
sinh

1cos
20

),(
1




























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Example (5): (diffusion process) two chambers (A and B) are separated by a 

thin semipermeable membrane. The water molecules transfer from chamber A to 

B due to the difference in concentration. This process obeys Fick’s second law of 

diffusion which is: 

 

 

                                     
t

C

x

C
D WW









2

2

 

where: 

 

WC water concentration (mole/m3). 

 D   =  water diffusion coefficient (m2/s). 

 

Using Fick’s second law of diffusion, find water concentration distribution 

throughout chambers A and B under the following conditions: 

 

I.C:      at  t = 0    ,    0CCW   

B.C 1:  at  x = 0   ,    1CCW   

B.C 2:  at  x= L   ,    1CCW   

 

Note: 0C and 1C are constant values. 

 

 

Solution:  

 

It is clear by inspection that conditions must be homogeneous in the x domain, if 

a direct analytical solution is required. To ensure getting homogenous conditions 

at x = 0 and x = L,  let’s define a new variable ( , for example ) as: 

)1(),(),( 1  CtxCtx W  

 

From Eq.  (1), Fick’s second law of diffusion can be written as: 

 

 

tx
D








 
2

2

 

 

And the boundary conditions can be modified as: 
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I.C:      at  t = 0    ,    10 CC   

B.C 1:  at  x = 0   ,    0  

B.C 2:  at  x= L   ,    0  

 

Now, the equation and the boundary conditions are simplified such that they can 

be solved directly using the same technique discussed in the previous examples. 

 

Thus, using the separation of variables method gives: 

 
)3()().(),(  tTxXtx     

 

The derivatives can be found, thus: 

 

TX
x





2

2
  and   TX

t




 2
 

 

Substitute the above derivatives in the PDE (Eq.2) gives:  

 

T

T

X

X
D





 

 

As in the previous examples, case 1 and 2 give illogical solution. Thus, we will 

start with case 3 where the constant is a negative value (- 2 ).  

  

 22 






T

T

X

X
D  

The solution of Eq. 2 is: 

 

)3()sincos(),( *

2

*

1

2

  x
D

Ax
D

Aetx t 
 

 

 

 

Now, apply the modified boundary conditions: 

 

B.C 1: 0*

1 A  

 B.C 2: 
L

n
DnL

D





 sinsin  
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Thus, from B.C 1 and 2, Eq. 3 reduces to: 

 

x
L

n
Aetx

t
L

n
D

)sin(),( *

2

2















 ,   where n = 0, 1, 2, 3 ….. 

 

Or   

                                     )4()sin(),(
1

*

2














x
L

n
eAtx

t
L

n
D

n






 

 

To find 
*

nA  , I.C can be applied. Thus, 

 

  dxx
L

n
CC

L
Awherex

L

n
ACC

L

nn .)(sin
2

;)sin(
0

10

*

1

*

10


 



 

 

From the integration, 
*

nA  can be defined as: 

 

 1)1(
)(2 10* 


 n

n
n

CCL
A


 

 

Substitute 
*

nA  in Eq. 4, gives: 

 

 
















1

10 )sin(1)1(
)(2

),(

2

x
L

n
e

n

CCL
tx

t
L

n
D

n 






 

 

Since 1),(),( CtxCtx W   (from Eq. 1), the above equation can be written 

as: 

 

 

















110

1 )sin(1)1(
2),(

2

x
L

n
e

n

L

CC

CtxC t
L

n
D

nW 




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2.2.3 Solution of INHOMOGENEOUS PDEs using Separation of Variables 

Method  

 
In example 5 (page 18), we have used elementary change of variables as a method 

to convert certain inhomogeneous boundary conditions to homogeneous form. In 

certain cases, the boundary inhomogeneity cannot be removed by elementary 

substitution. In other cases, the defining equation itself is not homogeneous 

(could give an example ?). Both sets of circumstances lead to inhomogeneous 

equations.  

A fairly general way of coping with inhomogeneous PDE is to apply the concept 

of deviation variables.  This technique is best illustrated by way of examples 

below. 

 

Example (5): solve the following PDE: 

t

y

x

y









2

2

 

I.C:      at  t = 0    ,    xy 9  

B.C 1:  at  x = 0   ,    10y  

B.C 2:  at  x= 5   ,    15y  

 

Solution:  

 
To solve the above PDEs, we will use the concept of deviation variables. The 

concept is based on assuming that, 

 

     )1()(),(),(  xftxtxy   

 

It is easy to find the derivatives: 

 

            2

2

2

2

2

2

and0
x

f

xx

y

tt

y























 
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Substitute the derivatives in the PDE,  

 

)2(
2

2

2

2
















tx

f

x


 

 

To force the above equation to be as the original PDE (i.e, 
t

y

x

y









2

2

), the term

2

2

x

f




 must equal zero, i.e.: 

)3(0
2

2






x

f
   

Eq.2 can be solved: 

 

)4(02100 21

2

2

2





CxCfmmm

x

f
 

 
Now, one can use Eq. 4 and the BCs to find C1 and C2 and to convert the B.Cs 

to a homogenous set of conditions, therefore: 

 
From B.C 1 and Eq.4, Eq.1 can be written as: 

 

21

)(

21 )0(),(10),(),( CCtxCxCtxtxy

xf

 
  

 

Note for homogenous BCs, 0),( tx . This means 102 C . 

 

 

From B.C 2 and Eq.4, Eq.1 can be written as: 

 


2

10)5(),(15 1

C

Ctx   

Again, ),( tx  must equal zero and, thus 11 C  and Eq.4 becomes:   

 

10)(  xxf  
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Now, applying the I.C:  

 

108)0,(10)0,(9
)(

 xxxxx
xf

   

 

From the above simplifications, PDE (Eq. 3) and BCs can be re-written as: 

 

)5(
2

2











tx


 

 

I.C:      at  t = 0    ,    108  x  

B.C 1:  at  x = 0   ,    0  

B.C 2:  at  x= 5   ,    0  

 
 
Now, Eq.5 can be solved directly as we did in the previous examples: 

 

)()(),( tTxXtx   
 

Then,  

 

constant
T

T

X

X




  

 
It must be know by now that the zero and positive value of constant ( 2 )give 

physically impossible solution. So, we will assume that the constant is a negative 

number ( 2 ) and proceed the solution:  

2





T

T

X

X  

 
Thus, the solution is:  

 

 

)sincos(),( 321

2

xAxAeAtx t    
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Integration by part 

 

Again, the solution can be written as:  

 

                    )sincos(),( *

2

*

1

2

xAxAetx t    
;  where 

21

*

1 AAA   and 31

*

2 AAA   

 

Now, applying B.C 1 and B.C 2:  

 

                                                  B.C 1:  
*

1̀0 A  

                                                  B.C 2:  5sin0 *

2 A  

 

Now, B.C 2 suggests either 0*

2 A (which is impossible) or 05sin  which is possible when 

 n5 where n = 1, 2 ,3, 4 , …….  

 

Thus, from B.C 2:  
5

5



n

n   . Substitution of these terms in the general solution 

gives: 

 





























x
n

Aetx
t

n

5
sin),( *

2

5

2






   Or   x
n

eAtx
t

n





















5
sin),(

2

5*

2






 

The above equation can be expressed as a series:  

 

          )6(
5

sin),(
1

5*

2

























n

t
n

n x
n

eAtx






 

 

Now, it is necessary to find the value of 
*

nA . This constant can be found by applying I.C: 

 

 seriessineFourierdxx
n

xAwherex
n

Ax n

n

n  






















5

0

*

1

* .
5

sin)108(
5

2
;

5
sin108:I.C



 

tablebelowtheinshownaspartbynintegratio;.
5

sin)108(
5

2
5

0

*

 







 dxx

n
xAn


  

                                                                                                 































 n
n

n
An

5
10cos

5
304.0*   

 1cos3
20* 








 


n

n
An

 

 

8x-10 

x
n






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
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
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Substitute *

nA in Eq. 6, the final solution is: 

 

 

 









































1

5

5
sin1cos3

20
),(

2

n

t
n

x
n

en
n

tx









    

  

 
Now, the equation can be written in terms of ),( txy using Eq.1: 

 

  
   )(

),(

1

5 10
5

sin1cos3
20

),(

2

xf

tx

n

t
n

xx
n

en
n

txy 














































  

 
Where  

nn )1(cos   
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- Sheet No. 1 - 

 

 

Q1.  Solve the following equation (wave equation): 

 

2

2

2

2

t

V

x

V
K









, where V is a string displacement.  

 

I.C:        t = 0        ,      V  = x 

B.C 2:   x = 0        ,      V = 0 

B.C 3:   x = L       ,       V = 0 

 

 

NOTE: The above equation represents the vibration of a string, like a violin or 

guitar string and is known as Wave Equation.  
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Q2. Left and right sides of an iron plate are perfectly insulated.  The upper side 

is kept at 10 °C and the opposite side is kept at 0 °C. Find the steady-state 

temperature ),( yxTP  in the plate. 

 

 

 

 

 

 

 

 

 

 

Q3. Unsteady-state heat transfer in the radial direction of a sphere can be 

represented by the following PDE: 

 

t

T

r

T

rr

T SSS

















12
2

2

 

 

Find ),( trTS  under the following conditions: 

 

I.C:        t = 0        ,      ST  = 10 °C 

B.C 2:   r = 0        ,      0




r

TS
 

B.C 3:   r = 1        ,        ST  = 0  

 

 

Q4. (Inhomogeneous PDE) solve the following PDE: 

 

t

y
x

x

y









2

2

2

 

 

Boundary conditions: 

 

I.C:      at t = 0    ,  y = 5         

B.C 1:  at x = 0   ,  y = 0       

B.C 2:  at x= L   ,  y = 0          
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