Chapter Two
Solution Methods for Models
Producing PDEs

At the end of this chapter, you should be able to:

Classify the PDEs.

Learn how to solve PDEs using different methods.
Analyse engineering problems that produce PDEs.
Apply different boundary conditions to find the final
solution of PDEs.



2.1 Classification and Characteristics of Linear PDEs

The general linear equation of second order can be expressed

2 2 2
POl QL RY!
ooy oy

where the coefficients P, Q, R depend only on x, y, whereas S depends on x, v, z,
oz/oy and az/oy . It is important to note here that if P, Q, R depend on z, Eq. 1 will
be considered non-linear. Furthermore, if S = 0, Eq. 1 will be called a

homogenous PDE.

The terms involving second derivatives are of special importance, since they
provide the basis for classification of type of PDE. By analogy, Eq. 1 can be

written as:
ax’ +2bxy+cy’=d-——————— (2)

Eq. 2 can be classified for constant coefficients when P, Q, R take values a, b, c,
respectively. The discriminant for the case of constant coefficients a, b, c is

defined as:

Accordingly, when:

A< 0: in this case the PDEs called Elliptic equation
A = 0:in this case the PDEs called Parabolic equation
A> 0:in this case the PDEs called Hyperbolic equation

Typical examples occurring in engineering for the above cases are:

- Fick’s second law of diffusion:

€, _poc, .

p PVl where C,= concentration of a species

This equation is parabolic since A=0 (a=1,b=0and c=0):
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- Laplace’s equation of heat conduction:

o°T o7
“——+2—=0
aXZ ayZ

This equation is elliptic since A=-4 (a=1,b=0andc=1)

- Newton’s law of wave motion:

o Loy
This equation is hyperbolic since A=4p (a=1,b=0andc=-p).

2.2 Methods of solving PDEs

Three methods will be covered in this course to solve the PDEs:
1. Separation of variables
2. Combination of variables

3. Laplace Transformation

2.2.1 Separation of Variables

This is the most widely used method in applied mathematics, and its strategy is
to break the dependent variable into component parts, each depending (usually)
on a single independent variable; invariably, it leads to a multiple of particular

solutions.

Example (1): Find the possible solutions for Fick’s second law of diffusion using
separation of variables method:

o°C _oC
ox> ot

where C is a solute concentration and D is the solute diffusion coefficient through

a media, and it is assumed constant.



Solution:

As a first step, we will assume that the concentration is a product of two separate
functions each of which depends on one independent variable:

Cx)=XX) T{A)—————- @

In other words, Eq. 1 represents the solution of Fick’s second law of diffusion.
From this solution, the derivatives can be found, thus:

2 2
€ _x T _x.1 and %:a—szx"-T
ot o X ox

Substitute the above derivatives in the PDE gives:

TOx T @

Since both T and X depend on a different independent variable, the ratios (T'/T
and D X"/X ) must equal to a constant to satisfy the equality in the equation, i.e.,

T b2 _constant ————— @)
T X

There are three possible cases to solve EQ.3:
Case 1: the value of the constant is zero
In this case Eq. 3 becomes:

T_! _ D XII _
T X
Now, T?zo = T'=0 (by integration) =T =A; where A; is the integration

0

constant.

"

and DX7:0 = X"=0 (by integration) = X'=A, = X = Ax+A,; where A, and

A; are the integration constants.

According to the above, the solution (Eq.1) is:

Cxt) = A(AX+A)




Case 2: the value of the constant is a positive number (4*):

So, T?z/iz = O_Ir—Tz/iz.dt (by integration) = InT =2t+A = T =Ae™
X" ) ) 2,2 nd
and D x =X = X _BX =0-——————- (4) (2" order ODE).

The second order differential equation can be solved using superposition
theorem:

ya V5
Thus, X"-=X=0 = m*-==0=m= +—
D D

=

Compare the roots to the Table 1 below, the solution of Eq. 4 is:

Ay iy
X(x)=A, e’® +A e®

Table 1 Solutions of ‘f;i‘ kd” +pu=
Roots of Characteristic General Solution of Differential
Equation Equation
Real, distinct: m,; # m, u(t) = ™" + "
Real, double: m; = m, u(t) = e™* + cyte™’
Conjugate complex: u(t) = c,e* cos(Bt) + c,e* sin(Bt)

m =« +1f,m =a —ip

According to case 2, the solution (Eq.1) is:

Clxt)=Ae™ (A, e® +A ei0")

Case 3: the value of the constant is a negative number (- 5%):
Similarto case 2: T=Ae”"

and Dx 2
X




Again, using superposition method:
2 2
X”+’B— X=0= m2+ﬂ—=0:>m:ii£
D D

JD

Compare the roots to the Table 1 below, the solution of Eq. 5 is:

_Acos B in-B_
X(x)_Azcos\/Bx+A3 sm\/Bx

According to case 3, the solution (Eq.1) is:

_ Ao B o B
C(x,t)=Ae (Azcos\/Bx+Agsm\/Bx)

NOTES:

1. This example illustrates using separation of variable method, in general, to

solve PDEs.

2. Always, there are three possible solutions, depending on the value of the

constant appeared in Eq. 3.

3. Determining the real solution needs to apply the boundary conditions and find
which one is physically possible as will be seen in the next example.

H.W 1 (deadline on 4™ of March 2019):

Solve the following PDEs using separation of variable method:

1) @+§:0
oxX oy

2) @+§—1OC=O
oX oy



2.2.2 Engineering problems producing PDEs

Example (2): Consider a steel cylinder with a small length to radius ratio. The
cylinder is thermally stable at T = 20 °C. In a heat treatment process, suddenly
the cylinder is immersed in an oil bath such that both end are keptat T =0 °C
during the process. Find the temperature distribution at any point along the
cylinder, using the appropriate assumptions?

Assumptions:

1. Heat transfer occurs only along the cylinder (i.e. no heat transfer in
the radial or the angle direction but only in the x-direction).

2. The process is unsteady —state.

3. There is no heat generation.

Analysis:

Energy balance around an element with ¢, or and ox gives:

2 2 2
T 0T 1T, 10T

10T,
> T2 =
OX or r or

L4
r’ o¢> K a ot
Take into account the proposed assumptions, the above equation reduces to:

2
0T :1% ______ )

x> a ot

and under the following conditions:

I.C. att=0 Tc=20°C or Tc (x,0)=20°C
B.C1l: atx=0 Tc=0°C or Tc(0,)=0°C
B.C2: atx=L Tc=0°C or Tc(L)=0°C

Mathematical solution of Eq.1:

Eqg. 1 is a PDE and can be solved using separation of variables method (exactly
as we did in the previous example for Fick’s second law of diffusion). This gives
the following solution:

! "

T =X(x).T(t) and T?: a ):( = constant




Now, we will try the three possible solutions and test them using the I.C and B.Cs:
Case 1: the value of the constant is zero

This gives the following solution:

To (D) = A(AX+A)

The solution can be written as:
T.(x,t)=Ax+A, ; where A'=A-A and A =A A
Now, applying B.C 1 and B.C 2:

B.C1l: 0=0+A = A =zero
B.C2: 0=AL+0= A =zero

It is clear from the above results that when the constant = 0, the solution is
physically impossible.

Case 2: the value of the constant is a positive number (1?):

T.(x0) = Ae™ (A, e A &%)

The solution can be written as:
Ay Ay
T () =e" (A e +A e'e );where A =A-Aand A=A A
Now, applying B.C 1 and B.C 2:
B.C1l 0=A+A
AL A
B.C2: 0=Ae'* +Ag'*

Applying the BCs suggests that A, = A, =0 and, again, this situation is impossible physically.

Case 3: the value of the constant is a negative number (- 5%):

NS B B
T.(x,t)=Age (Azcos\/gx+A33|n\/Ex)




The solution can be written as:

T (x,t)= eﬂt(Aicos%x+Azsm\/ﬂ_x) where A’ = A -A, and A)=A-A

Now, applying B.C 1 and B.C 2:

B.C1l 0=A;
BC2: 0=Asin2-L
Ja
Now, B.C 2 suggests either A, =0 (which is impossible) or sin%L:OWhich is possible
o
B
when —=L=nz wheren=0,1,,2,3 4,.......
Ja

Thus, from B.C 2: iL =Nz :izn{ and f= \/E(nT”). Substitution of these terms in

Jo Vo

the general solution gives:

nrx 2 nzx 2
- « "o\t (nr
T.(x,t)=¢e [ L } {Az sm( jx} or Te(x,t)=A e [ - } sm(T]x
The above equation can be expressed as a series:
2
2, —a|tE Nz
T.(xt)=)> Ae 7] sin| — |x

= L

Now, it is necessary to find the value of A: . This constant can be found by applying I.C:

1.C: 20= ZAh sm( jx where A = —IZOSII’]( - )xdx (Fourier sine series)

Let’s take L = 10 cm, this means:

10
. 40 N
0.2 120sin Xdx = =— | —CO0S| — |X
A= I (10} = A nz { (lOJ L

N :E O Lo +1]



Example (3): Repeat Example 2, using the following conditions:

o°T. 10T,

x> a ot

I.C: at t=0 Tc=10x? or Tc (x,0) = 10 x2
BC1. at x=0 Tc=0°C or Tc (0,t)=0°C
B.C2: at x=1L Tc=0°C or Tc(Lt)=0°C

SOLUTION:

The solution is exactly as in Example 2, but the analysis of case 3 will be different since the
initial condition is different:

Case 3: the value of the constant is a negative number (- 8*):

_Ae v in B
T.(x,t)=Ae (Azcos\/ax+A33|n\/Ex)

Again, the solution can be written as:
_ _ﬂzt * L * - i . - . _
To(x,t)=e"" (A cos—=Xx+ A, sin X); where A=A -A and A) = A - A,
Ja Ja

Now, applying B.C 1 and B.C 2:

B.C1l: 0=A;

* - ﬂ
B.C2: 0=A,sin—=L
A e
Now, B.C 2 suggests either A, =0 (which is impossible) or sinﬁL:OWhich IS possible

Ja
p

when =L=nz wheren=1,2,3,4,.......

Ja

Thus, from B.C 2: s L=nzx :>£ :nT” and f= \/E(nT”) . Substitution of these terms in

Jo Vo

the general solution gives:
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To(x1) = e_a{ﬂ | {Az sin(n{jx} or To(xt)=A e_a[ﬂ tsin(nT”jx

The above equation can be expressed as a series:
- —a [Mrt Nz
To(xt)=> Ale "t sinf—= [x————- 1)
=i L
Now, it is necessary to find the value of A: . This constant can be found by applying I.C:

I.C: 10x2_ZAn sm[ )x where A = —lex sm(nljz)x.dx(Fouriersineseries)

Let’s take L = 10 cm, this means:

A =0.2 I(lO X )sm( jx dx ;integration by partas shown in the below table

Integration by part

2 10 10 X2 14
= A =02|-10x* (10 cos n7[]x+20x loj sin| "% |y + 20[10 cos(n” X sm( jx
nz 10 nr 10 nz 10

i (mes( )X

3 3
= A =0.2|-1000 107 cosnz +20( 12 cosnz—20( 22 20
nrx nz nz s|n X
nr
Zero
. (2000 10 10 07,
S>A=- cosnz +4| = | (cosnz 1) Nz 10
Nz nr

Substitute A  in Eq. 1, the final solution is:

To(x,t)= i [20 O)cosn +4(r1]?[j (cosnz —1) ea{ﬂtsin(n{jx

11



Example (4): The faces of a thin square copper plate (10x10cm?) are perfectly
insulated. The upper side is kept at 20 °C and the other sides are kept at 0 °C.
Find the steady-state temperature T, (x,y) in the plate (solve the Laplace equation
given in page 3).
Tp(x,10)=20°C
SOLUTION: ~

v

Assumptions:

1. Two-dimensional heat transfer (only in x
and y-directions).

2. No heat generation.

3. steady-state heat transfer.

v J )

(0)0)_}!& 10 cm %i
X
z
Analysis:
The general heat transfer equations in a solid body:
2 2 2 .
Ty Ty Mo 4 10T, n
ot oyt o2 K o« ot

Since the problem is a 2-D heat transfer in a solid at steady-state condition,
Eq. 1 reduces to:

0°T, 07T,
+ =
aXZ 6y 2

and under the following conditions:

B.C1l: at x=0 , Tp=0°C or Tp(0,y)=0°C
B.C2: atx=10 ,Tp=0°C or Tp(10,y)=0°C
B.C3: aty=0 ,Tp=0°C or Tp(x,00=0°C
B.C4: at y=10 ,Tp=20°C or Tp(x,10)=20°C

12



Mathematical solution of Eq.2:

Using the separation of variables method gives:
T (X yY)=X(X)Y(y)———- ©)
The derivatives can be found, thus:

T,

2
x> aTP_X'Y"
X

> =

=X"Y and

Substitute the above derivatives in the PDE (Eq.2) gives:

X” 3 _Y_!!
X Y
Since both X and Y depend on a different independent variable, the ratios ( X"/X

and Y"/Y ) must equal to a constant to satisfy the equality in the equation, i.e.,

XY constant ————— (4)
X Y

As in the previous examples, there are three possible cases:

Case 1: the value of the constant is zero
In this case Eq. 4 becomes:

XY
X Y
Now, X7=0 — X"=0 (by integration) = X'=A = X = Ax+A,; where A; and A

0

are the integration constants.

n

and —Y7=0 = Y"=0 (by integration) =Y'=A, =Y =Ay+A,; where A; and A4

are the integration constants.

According to the above, the solution (Eq.2) is:

To (%, y) = (AX+A)(AY+A,)

13



Applying the boundary conditions:

B.C1l. 0=A(AYy+A)=A,=0
B.C2: 0=(10A)(Ay+A)=A=0

Again, the solution is not physically possible.
Case 2: the value of the constant is a positive number (4*):

In this case Eq. 4 becomes:

X_":_Y_":,12
X Y

>)<( — 72 = X" X =0 (2" ODE)

Now,

The second order differential equation can be solved:
Thus, X"= 22X =0 = m*-2=0=>m=+1
Compare the roots to the Table 1 given in page 5, the solution is:
X(x)=Ae*+A e™
For Y variable:
Y'+2Y=0 = m*+ ¥ =0=>m=%il = Y(y)=Asin Ay + A, cos ly
According to the above, the solution (Eq.2) is:

T, (X, y) = (A e™ + A, e™)(A,sin Ay + A, cos 1y)
Applying the boundary conditions:

B.C1l: 0=(A+A)AsInly+A,costy)=A+A =0
B.C2: 0=(A e +A, e ™) (Asindy+Acosty) = A e +A e ™ =0

To satisfy B.C 1 and 2, A; and A, must be zero and that gives impossible physical
solution.

14



Case 3: the value of the constant is a negative number (- 5?)

In this case Eq. 4 becomes:

xXT__ Y
X Y
X”

Now, 7:/12 = X"+p*X =0 (2" ODE)

_ﬂz

The second order differential equation can be solved:
Thus, X"+ X =0 => m*+ 2 =0=>m=+ip
Compare the roots to the Table 1 given in page 5, the solution is:
X (x) = A sin X+ A, cos fx

For Y variable:
Y'-pY=0=m -5 =0=>m=t8 = Y(y)=Ae" +Ae”’
According to the above, the solution (Eq.2) is:

To (X, ) = (A sin X+ A, cos Bx)(Ae” + Ag ™) —————- 5)
Applying the boundary conditions yields,

B.C1: 0=(0+A)Ae” +Ae?)= A =0
B.C2: 0=(Asin f10)(Ae” + Ae ™) = S =nx/10

Thus, Eq.5 becomes:

T. (% Y) = (A sin rl‘—g X)(Ae® +Ae ©)

Or,

nrz

. Nz oy ity X .
TP(X’y):SmEX(Aielo +A e "0 ];WhereAl=A1-A3 and A, = A A

15



From B.C 3:
0= (A +A)=A=-A

Now, T,(X,Y) equation can be written as:

To (X y) = A'sin rl'—gx [emy - ewyj ————— (6)
. . Nr e%y e_%y
Since sinh 1077 > , Eq. 6 can be expressed as:
.. Nz .. Nz
To (X, y)=2A sin—xsinh—y-————— 7
o (X, y)=2A 10 10 y (7)

Eq. 7 can be expressed as a series of n:

L « . Nrx ., Nr
To(X,y)=)> 2A,sin—X -sinh —y—————— (8)
" le 10 10

Re-arrange Eqg. 8:

Nz
R ¥ G

10 ©9)

T.(xy) = (2A; sinh -= y)sin
T 10
Now, apply B.C 4:
L « ., Nr . Nz
20= ) (2A, sinh —10)sin—x
le( A 10 ) 10
Comparing the above equation to Fourier sine series, A, can be found:

. . Nz 2% nz
2A sinh ~=10 ==~ 20 sin—x dx
107 10 4 10

16



« . N7 40 nr Y
= 2A, sinh —10=—| —c0S—X
10 nz 10 ),

40 20 (~cosnz +1)

* ainh N7 «  Nrx
= 2A sinh —10=—(-cosnz+1) = A =
A 10 Nz ( d ) A sinh nz

Now substitute A, in Eq. 9:

20
== (~cosnz +1) ;

sinh nz

To(x,y)=> | DE sinh rl]—gy.sin—ﬂx
1

10
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Example (5): (diffusion process) two chambers (A and B) are separated by a
thin semipermeable membrane. The water molecules transfer from chamber A to
B due to the difference in concentration. This process obeys Fick’s second law of
diffusion which is:

C1 C1

a 2 6 water molecule — “‘"‘ill’("m“‘ah't'
:\N CM{ membrane
D = sugar molecule B ‘ A
ox* ot i =
X . LR ] S
-
e
-
. o

where:

SAARERD

Cw = water concentration (mole/md).
D = water diffusion coefficient (m?/s).

K

Using Fick’s second law of diffusion, find water concentration distribution
throughout chambers A and B under the following conditions:

.C: att=0 , C,=C,
B.C1l:at x=0 , C,=C,
BC2 atx=L , C,=C

Note: C, and C, are constant values.

Solution:

It is clear by inspection that conditions must be homogeneous in the x domain, if
a direct analytical solution is required. To ensure getting homogenous conditions

atx =0and x =L, let’s define a new variable (77, for example ) as:

n(x)=G, (x)-C -—--()

From Eqg. (1), Fick’s second law of diffusion can be written as:
o' _on
ox* ot

And the boundary conditions can be modified as:

18



I.C: att=0 , n=C,-C,
B.C1l: at x=0 , 7n=0
BC2: atx=L , n=0

Now, the equation and the boundary conditions are simplified such that they can
be solved directly using the same technique discussed in the previous examples.

Thus, using the separation of variables method gives:
17 (%) =X(x).T(t)-———- 3)
The derivatives can be found, thus:

o
ox?

2
_x"T and Tox.1
ot

Substitute the above derivatives in the PDE (Eq.2) gives:

X"_T_!
X T

As in the previous examples, case 1 and 2 give illogical solution. Thus, we will
start with case 3 where the constant is a negative value (- 5°).

The solution of Eq. 2 is:

e s BN
n(x,t)y=e"" (A cos\/5x+Azsm\/5x) (3)

Now, apply the modified boundary conditions:

B.C1: A =0

. p : nz
B.C2: sin—L=sinnz = B=/D—
/D p=NDT

19



Thus, from B.C 1 and 2, Eq. 3 reduces to:

—Dnlzt « . N1
n(x,t)=e [J AZSIH(T)X1 wheren=0,1,2,3 .....

Or

=, bt f . Nrx
n(xt)=> Ae [L} 'S'H(T)X ————— (4)
1
To find A, , I.C can be applied. Thus,

C,—C=D A sin(nT”)x; whereA:=%
1

O e

(C,~C,)sin (”T”)x dx

From the integration, A, can be defined as:

= A :%ﬂ_q) [— <" +1]

Substitute A, in Eq. 4, gives:

nrz

a0 =3, =) Loy Al i)

1

Since 77 (x,t) =C,, (x,t)—C, (from Eq. 1), the above equation can be written
as:

Ct-C % 2 Lepafe T s

20



2.2.3 Solution of INHOMOGENEOUS PDEs using Separation of VVariables
Method

In example 5 (page 18), we have used elementary change of variables as a method
to convert certain inhomogeneous boundary conditions to homogeneous form. In
certain cases, the boundary inhomogeneity cannot be removed by elementary
substitution. In other cases, the defining equation itself is not homogeneous
(could give an example ?). Both sets of circumstances lead to inhomogeneous
equations.

A fairly general way of coping with inhomogeneous PDE is to apply the concept
of deviation variables. This technique is best illustrated by way of examples

below.

Example (5): solve the following PDE:
0%y _ oy

% at
.C: att=0 , y=9X
B.C1l: at x=0 , y=10
B.C2: at x=5 , y=15

Solution:

To solve the above PDEs, we will use the concept of deviation variables. The
concept is based on assuming that,

y(xt) =n(x,0) + £ (x) ———-(1)

It is easy to find the derivatives:

—=—+0 and 62y28277+82f
ot ot ox> ox*  ox?
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Substitute the derivatives in the PDE,

2 2
877+8f on )

x> ox2 ot

2

To force the above equation to be as the original PDE (i.e, 872/ = % ), the term

o’ f :
v must equal zero, i.e.:
o’ f
—=0-—-——- 3
o 3)
Eq.2 can be solved:
o’ f 2
—=0= m°=0 => ml=m2=0 = f=Cx+C,————(4)

ox?

Now, one can use Eq. 4 and the BCs to find C1 and C2 and to convert the B.Cs
to a homogenous set of conditions, therefore:

From B.C 1 and Eq.4, Eq.1 can be written as:
y(x,t) =n(x,t)+Cx+C, = 10=n(xt)+C, (0)+C,
—

f(x)

Note for homogenous BCs, 77(X,t) =0. This meansC, =10,

From B.C 2 and Eq.4, Eq.1 can be written as:
15=n(x,1)+C, (5)+10

C,

Again, 7(X,t) must equal zero and, thus C, =1 and Eq.4 becomes:

f(X)=x+10

22



Now, applying the 1.C:

9x =n(x,0)+ x:l)o = 7(x,0)=8x-10

From the above simplifications, PDE (Eqg. 3) and BCs can be re-written as:

o’n _on
YU_Y0 (5
ox* ot ©)

I.C: att=0 , n=8x-10

B.C1: at x=0 , 7n=0

B.C2: at x=5 , n=0

Now, Eq.5 can be solved directly as we did in the previous examples:
n(x,1) = X(x)-T(t)
Then,

X = T— = constant
X

It must be know by now that the zero and positive value of constant (4*)give
physically impossible solution. So, we will assume that the constant is a negative
number (- 4?) and proceed the solution:

X1

2
X T p

Thus, the solution is:

n(x,t) = A&e*ﬁ’zt (A, cos Bx + A, sin )

23



Again, the solution can be written as:

n(x,t)=e”" (A cos fx+ A sin Bx); where A" =A A and A, = A A,
Now, applying B.C 1 and B.C 2:

BC1 0=A
B.C2: 0=A,sinf5

Now, B.C 2 suggests either A, =0 (which is impossible) or sin 35 = 0which is possible when
B5=nz wheren=1,23,4,.......

Thus, from B.C 2: f5=nz =pf= n?” . Substitution of these terms in the general solution

gives:
nrzx 2 nrz 2
-l = | ¢ * . ¥4 » |2 |t 14
n(x,t)=e [ 5 } |:A2 sm(?jx} or N(x,t)=A¢e { 5 } sm(?jx
The above equation can be expressed as a series:
- {MTt Nz
nxt)=> Ae'? sin(—)x ————— (6)
n=1 5
Now, it is necessary to find the value of A: . This constant can be found by applying I.C:

I.C: 8x-10= ZAn sm( : jx where A = —j(8x 10) - s|n(”5 )xdx(FouriersineserieS)

5
A = g f (8x—-10) sm( c jx dx ;integration by partas shown in the below table

0

Integration by part

2 5 8x-10 . (n
=>A =0.4{ (8x— 10)( jcos(ns jx+8( > j sin(n;jx] Sm[?ﬂ}(
nrx

nrzx 5
—| — |COS§| —
nz 5

. 5 5
=A :0.4{—30(mjcosnn—10(mﬂ Zero _( 5 jz Sin(nﬂ

=>A =[§ZJ [-3cosnz-1]
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Substitute A® in Eq. 6, the final solution is:
= [( 20 {2 (ne
n(x,)=> || —|[-3cosnz-1]le ' ** sin| — |x
| \N7 5
Now, the equation can be written in terms of y(x,t) using Eq.1:

y(x,t) = EK%) [-3cosnz -1 ]}e{nﬂ t sin(n{jx+w

f(x)

n(x.t)

Where cosnz =(-1)"
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- Sheet No. 1 -

Q1. Solve the following equation (wave equation):

o oV

K—Z— . . . .

o A where V is a string displacement
1.C: t=0 .V =X
B.C2: x=0 . V=0
B.C3: x=L V=0

NOTE: The above equation represents the vibration of a string, like a violin or
guitar string and is known as Wave Equation.

a X

Figure 1 String fixed at the ends.

T(x + Ax)

9]

T(x) mg

Figure 2 Section of string showing forces exerted on it. The angles are
a=¢(x,t)and B =¢(x+ Ax,t).
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Q2. Left and right sides of an iron plate are perfectly insulated. The upper side
Is kept at 10 °C and the opposite side is kept at 0 °C. Find the steady-state

temperature T,(x,y) in the plate.

Q3. Unsteady-state heat transfer in the radial direction of a sphere can be

represented by the following PDE:

0°T, 20T, 14T,
+ — -
o’ ror a ot

Find Tg (r,t) under the following conditions:

IC:  t=0 . Ts=10°C
oT

BC2 r=0 , —=0
or

BC3 r=1 , T.=0

Q4. (Inhomogeneous PDE) solve the following PDE:

2
a—¥+2x=@
OX ot

Boundary conditions:

.C: att=0 ,y=5
B.C1: atx=0 ,y=0
B.C2: atx=L ,y=0
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