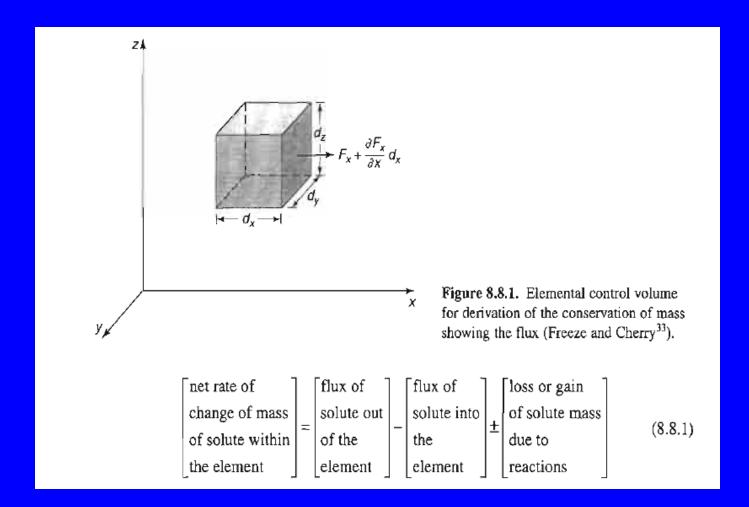
CHAPTER 8

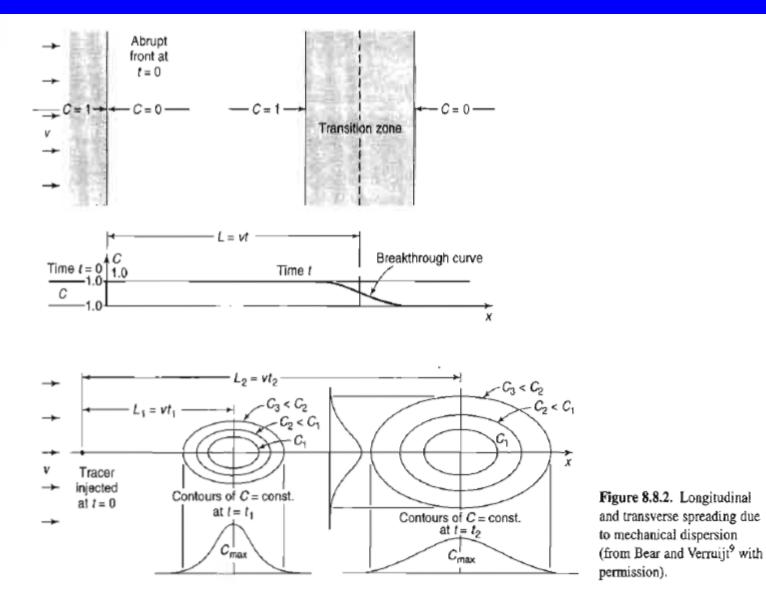
POLLUTION of GROUNDWATER

- ➤ The law of conservation (advective dispersive equation) for solute transport
- Saturated media
- > Followed Ogata, Bear and Freeze and Cherry

The solutes in porous media considers the flux of solute into and out of a fixed chemicale:



- > Solutes could be considered in two classes:
 - Conservative solutes: are non reactive with soil, native groundwater (such as Chloride)
 - Reactive solutes
- ➤ Advection: is the transport of solute by the flowing groundwater (Darcy's law)
- Hydrodynamic: is dispersion results from mechanical mixing and molecular diffusion



- ➤ Diffusion: is the mass flux of solute from a zone of higher concertation to zone of lower concertation
- ➤ The diffusion by Fick's law for steady state condition:

$$F = -D\frac{dC}{dx} \tag{8.8.2}$$

where F is the mass flux of solute per unit area per unit time (M/L²/T); D is the diffusion coefficient (L²/T); C is the solute concentration (M/L³); and dC/dx is the concentration gradient (M/L³/L). The negative sign indicates the movement from greater to lesser concentration. Dif-

- ➤ The negative sign indicates the movement from greater to lesser concentration
- ➤ The diffusion coefficients for major ions (Na, Mg, Ca, Cl, HCO, SO4) is 1*10-9 to 2*10-9 m²/s

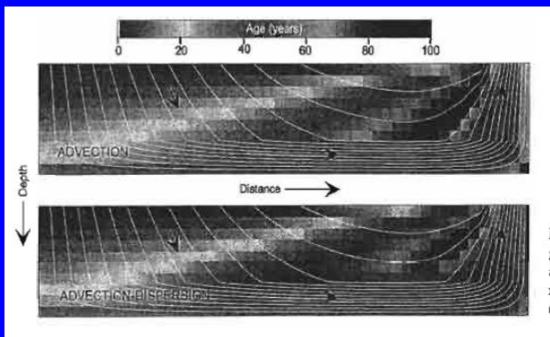


Figure 8.8.3. Streamlines and groundwater age distributions with and without dispersion in a regional layered aquifer system (Goode⁴⁰).

➤ Fick's second law described the change of concentration over time:

$$\frac{\partial C}{\partial t} = D * \frac{\partial^2 C}{\partial x^2}$$
 (8.8.3)

where $\partial C/\partial t$ is the change in concentration with time. The above expressions of Fick's first and

Diffusion coefficient for nonabsorded species in porous media flow:

$$D^* = \omega D \tag{8.8.4}$$

where ω is an empirical coefficient (<1) that takes into account the effect of the solid phase of the porous media on the diffusion. Freeze and Cherry³³ suggest using the above effective diffusion coefficient with ω ranging from 0.5 to 0.01, to account for the tortuosity of the flow path.

➤ The longitudinal coefficient of hydrodynamic dispersion (DL) is expressed as:

$$D_L = \alpha_L \overline{\nu} + D^* \tag{8.8.5}$$

where α_L is the dynamic longitudinal dispersivity, a characteristic property of the porous medium; \overline{v} is the average linear groundwater velocity; and D^* is the molecular diffusion

A rough approximation of α_L based on averaging published date (Gelhar et al. 38) is

$$\alpha_L = 0.1L \tag{8.8.6}$$

where L is the length of the flow path (m). For lengths less than 3,500 m, Neuman⁷² gave

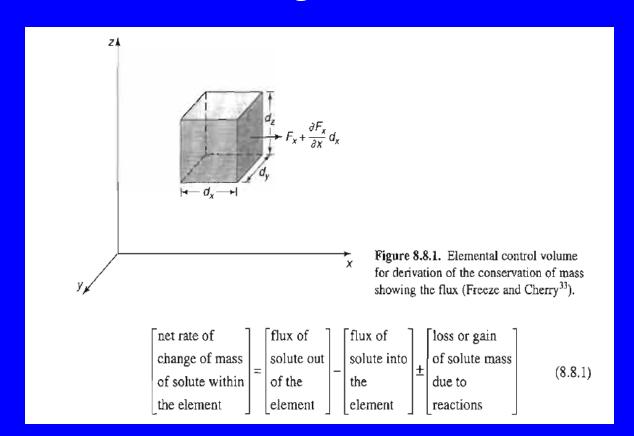
$$\alpha_L = 0.0175L^{1.46} \tag{8.8.7}$$

For transverse (lateral) dispersivity, α_T is typically 1/10 to 1/100 of the longitudinal dispersivity α_L . Xu and Eckstein¹⁰⁹ used a statistical study to develop the following relationship

$$\alpha_L = 0.83(\log L)^{2.414}$$
 (8.8.8)

where L is in ft or m and α_L is in ft or m.

- > Advection-Dispersion Equation:
 - Solute transport in saturated porous media
 - Consider the following elemental volume:



➤ The mass of solute is transported in the x – direction by advection and by dispersion expressed as:

Mass transported by advection =
$$\overline{v}_{r}nC dA$$
 (8.8.9)

Mass transported by dispersion =
$$nD_x 2C/2x dA$$
 (8.8.10)

where dA is the elemental cross-sectional area of the cubic element and D_x is the dispersion coefficient in the x-direction defined by

$$D_x = \alpha_x \overline{\nu}_x + D^* \tag{8.8.11}$$

where α_r is the dynamic dispersivity and $\alpha_r v_r$ is the mechanical dispersion.

 F_x is now represented as

$$F_x = \bar{v}_x nC - nD_x \frac{\partial C}{\partial x}$$
 (8.8.12)

with the negative sign for the dispersive term indicating that the contaminant (solute) moves toward the zone of lower concentration. In a similar manner, F_y and F_z are respectively

$$F_{y} = \overline{\nu}_{y} nC - nD_{y} \frac{\partial C}{\partial y}$$
 (8.8.13)

$$F_z = \overline{v}_z nC - nD_z \frac{\partial C}{\partial z}$$
 (8.8.14)

The total solute entering (flux entering) the cubic element is

$$F_{\text{entering}} = F_x dz dy + F_y dz dx + F_z dx dy$$
 (8.8.15)

and the total solute leaving (flux leaving) the cubic element is

$$F_{\text{leaving}} = \left(F_x + \frac{\partial F_x}{\partial x} dx\right) dy dz + \left(F_y + \frac{\partial F_y}{\partial y} dy\right) dz dx + \left(F_z + \frac{\partial F_z}{\partial z} dz\right) dx dy \quad (8.8.16)$$

- Partial terms indicated the spatial change of solute mass in the respective direction
- For nonreactive dissolved substance, the flux into element the flux out of the element is equal to the net rate of change of mass of solute:

$$\Delta F = -n \frac{\partial C}{\partial t} dx dy dz$$
 (8.8.17)

Combining the above three expressions (Equations 8.8.15-8.8.17) and simplifying gives

$$\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} = -n \frac{\partial C}{\partial t}$$
 (8.8.18)

Substituting Equations 8.8.12-8.8.14 into Equation 8.8.18 gives

$$\left[\frac{\partial}{\partial x}\left(D_{x}\frac{\partial C}{\partial x}\right) + \frac{\partial}{\partial y}\left(D_{y}\frac{\partial C}{\partial y}\right) + \frac{\partial}{\partial z}\left(D_{z}\frac{\partial C}{\partial z}\right)\right] - \left[\frac{\partial}{\partial x}\left(\overline{v}_{x}C\right) + \frac{\partial}{\partial y}\left(\overline{v}_{y}C\right) + \frac{\partial}{\partial z}\left(\overline{v}_{z}C\right)\right] = \frac{\partial C}{\partial t}$$
(8.8.19)

For a homogenous medium *v* steady and uniform in space and time, then the previous equation is simplified as:

$$\left[D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} + D_z \frac{\partial^2 C}{\partial z^2}\right] - \left[\tilde{v}_x \frac{\partial C}{\partial x} + \tilde{v}_y \frac{\partial C}{\partial y} + \tilde{v}_z \frac{\partial C}{\partial z}\right] = \frac{\partial C}{\partial t}$$
(8.8.20)

For one dimension, the conservation of mass (advection-dispersion equation) is

$$D_x \frac{\partial^2 C}{\partial x^2} - \bar{v}_x \frac{\partial C}{\partial x} = \frac{\partial C}{\partial t}$$
 (8.8.21)

which can also be expressed along a flowline by using L for x where L is the coordinate direction along the flowline. D_L is the longitudinal coefficient of hydrodynamic dispersion and $\overline{\nu}_L$ is the average linear velocity along the flowline.

 \triangleright The analytical solution of Equation (8.8.21) is:

Initial condition
$$C(x, 0) = 0$$
 $x \ge 0$
Boundary condition $C(0, t) = C_0$ $t \ge 0$
Boundary condition $C(\infty, t) = 0$ $t \ge 0$

$$C(x, t) = \frac{C_0}{2} \left[\operatorname{erfc} \left(\frac{x - vt}{2\sqrt{D_L t}} \right) + \exp \left(\frac{vx}{D_L} \right) \operatorname{erfc} \left(\frac{x + vt}{2\sqrt{D_L t}} \right) \right]$$
(8.8.22)

where x is the distance from the injection point.

The argument of the exponential $(\overline{v}_L x/D_L)$ is the Peclet number, $P_e = \overline{v}_L x/D_L$, which is a measure of the ratio of the rate of transport by advection to the rate of transport by diffusion.

EXAMPLE 8.8.1

The objective of this example is to illustrate the use of Equation 8.8.22 to compute the concentration of a pollutant as a function of time and distance from a point or line source in an aquifer with known properties. The aquifer properties are: hydraulic conductivity = 2.5×10^{-5} m/s; hydraulic gradient = 0.001; effective porosity = 0.25; and an effective diffusion coefficient = 0.75×10^{-9} m²/s. A chloride solution with a concentration of 600 mg/l penetrates (enters) the aquifer along a line source. Determine the chloride concentration at a distance of 25 m from the source after one year, two years, and four years.

Step 1: Compute the pore velocity (average linear velocity) using Darcy's law:

$$\overline{v}_L = \frac{Ki}{n_e} = \frac{(2.5 \times 10^{-5})0.001}{0.25} = 1 \times 10^{-7} \text{ m/s}$$

Step 2: Compute the longitudinal dispersivity using the approximation of Neuman,⁷² Equation 8.8.7:

$$\alpha_L = 0.0175L^{1.46}$$

$$= 0.0175(25)^{1.46}$$

$$= 1.92 \text{ m}$$

Using the approximation by Xu and Eckstein, 109 Equation 8.8.8, we have

$$\alpha_L = 0.83(\log L)^{2.414}$$

$$= 0.83(\log 25)^{2.414}$$

$$= 1.86 \text{ m}$$

Step 3: Compute the coefficient of longitudinal mechanical dispersion-diffusion (coefficient of longitudinal hydrodynamic dispersion) using Equation 8.8.11 where $\alpha_L = 1.86$ m:

$$D_L = \alpha_L v_L + D^*$$
= 1.86 × (1 × 10⁻⁷) + 0.75 × 10⁻⁹
= 1.9 × 10⁻⁷ m²/s

Step 4: Use Equation 8.8.22 to compute the concentration for times of t = 1 year = 60 s/min × 1,440 min/day × 365 days/yr = 3.15×10^7 s; t = 2 years = 6.31×10^7 s; and t = 4 years = 12.6×10^7 s; $\overline{v}_L = 1 \times 10^{-7}$ m/s; $C_0 = 600$ mg/l; x = L = 25 m; $D_L = 1.9 \times 10^{-7}$ m²/s.

For
$$t = 1$$
 year: $C(25 \text{ m}, 1 \text{ yr}) = 0.0 \text{ mg/l}$

For
$$t = 2$$
 years: $C(25\text{m}, 2 \text{ yr}) = 0.037 \text{ mg/l}$

For
$$t = 4$$
 years: $C(25\text{m}, 4 \text{ yr}) = 21.6 \text{ mg/l}$

> Transport of Reactive Pollutants:

- > Sorption: is the exchange of molecules and ions between the solid phase and liquid phase
- ➤ Adsorption: is the attachment of molecules and ions from solute to the rock material
- > Desorption: is the release of molecules and ions from the solid phase to the solute

- Transport of Reactive Pollutants:
- ➤ The one-dimensional transport for advection-dispersion:

$$D_x \frac{\partial^2 C}{\partial x^2} - \bar{\nu}_x \frac{\partial C}{\partial x} = \frac{\partial C}{\partial t}$$
 (8.8.21)

Can be extended to include the effects of retardation of solute transportation

- Transport of Reactive Pollutants:
- ➤ The form of the one-dimensional equation that included retardation, in a homogenous saturated media due to adsorption is expressed as:

$$D_{\rm L} \frac{\partial^2 C}{\partial l^2} - \bar{\nu}_L \frac{\partial C}{\partial l} + \frac{\rho_b}{n} \frac{\partial S}{\partial t} = \frac{\partial C}{\partial t}$$
 (8.8.23)

(dispersion term) (advection term) (reaction term)

where ρ_b is the bulk mass density of the porous medium, n is the porosity, and S is the mass of chemical constituent adsorbed on a unit mass of the solid part of the porous medium. $\partial S/\partial t$ is the rate at which the constituent is adsorbed [M/MT] and $(\rho_b/n)(\partial S/\partial t)$ is the change in concentration in the groundwater caused by adsorption or desorption [M/(L³T)].

- > Transport of Reactive Pollutants:
- Adsorption relationships could be plotted as straight line on log-log paper:

$$\log S = b \log C + \log K_d$$

$$S = K_d C^b$$
(8.8.24)

where S is the mass of solute species adsorbed or precipitated on the solids per unit bulk dry mass of the porous medium, C is the solute concentration, and K_d and b are coefficients. These

- These coefficients depend on the solute species, nature of the porous medium, and other conditions
- b is the slope
- $\triangleright Kd = dS/dC$

- Transport of Reactive Pollutants:
- The retardation equation *Ra* is expressed as:

$$R_a = 1 + \frac{(1-n)\rho_b}{n} K_d \tag{8.8.25}$$

where n is the porosity and ρ_b is the bulk mass density of the soil, gm/cm³; and K_d is the distribution coefficient for the solute with the soil. Also $1/\theta = (n-1)/n$ where θ is the volumetric content of the soil, which is dimensionless. The retardation factor ranges from 1 to 10,000. A

 \triangleright The velocity of solute front Vc:

$$v_c = \overline{v}/R_a \tag{8.8.26}$$

- > Transport of Reactive Pollutants:
- ➤ The amount of contaminant adsorbed by solids is a function of the concentration in solution:

$$-\frac{\partial S}{\partial t} = \frac{\partial S}{\partial C} \cdot \frac{\partial C}{\partial t}$$
 (8.8.27)

and

$$-\frac{\rho_b}{n} \cdot \frac{\partial S}{\partial t} = \frac{\rho_b}{n} \cdot \frac{\partial S}{\partial C} \cdot \frac{\partial C}{\partial t}$$
 (8.8.28)

- > Transport of Reactive Pollutants:
- Using Kd = dS/dC, and governing the previous equations in equation (8.8.21), the one-dimensional advection-dispersion equation in retardation terms is expressed as:

$$\frac{\partial C}{\partial t} = -\frac{v}{R_a} \frac{\partial C}{\partial x} + \frac{D_L}{R_a} \frac{\partial^2 C}{\partial x^2}$$
 (8.8.29)

- ➤ The first term is the retarded advective inflow outflow
- ➤ The second term is retarded diffusion and dispersion