
EXPERIMENT-FOUR: FLOW CONTROL

 (4-1)

EXPERIMENT-FOUR

FLOW CONTROL

MATLAB has several flow control constructs:

• if statement

• if- else statement

• if- elseif statement

• switch and case statements.

• for loops

• while loops

• continue statement

• break statement

1- if statement

 The if statement evaluates a logical expression and executes a group of statements

when the expression is true. The if statement form is:

if condition

 statement

end

or in simplest form we can put it in a single line:

if condition statement, end

where condition is usually a logical expression , i.e. an expression containing a relational

operator, and which is either true or false. These relational operators are:

< less than
<= less than or equal
== equal
~= not equal
> greater than

EXPERIMENT-FOUR: FLOW CONTROL

 (4-2)

>= greater than or equal
If condition is true, statement executed, but if condition is false, nothing happens. More

complicated logical expressions can be constructed using the three logical operators:

& and
 | or
 ~ not

Example: The quadratic equation:

ax
2
 + bx + c = 0

has equal roots, given by –b/2a, provided that b
2
 – 4ac=0 and a ≠ 0. This translates to the

following MATLAB statements:

a = input(’enter the value of a:’);

b = input(’enter the value of b:’);

c = input(’enter the value of c:’);

if (b^2 -4*a*c == 0) & (a ~= 0)

 disp(‘The quadratic equation has equal roots’)

 x = -b / (2*a)

end

After running this program you will see that the command window wants you to enter a

value for the variables a and b according to the input function that you put it in the first and

second lines of the program. Then the command window will gives the result if the

condition is satisfied.

 condition may be a vector or matrix, so it is important to understand how relational

operators and if statements work with matrices. When you want to check for equality

between two variables, you might use

if A == B, ...

This is legal MATLAB code, and does what you expect when A and B are scalars. But

when A and B are matrices, A == B does not test if they are equal, it tests where they are

equal; the result is another matrix of 0’s and 1’s showing element-by-element equality. In

fact, if A and B are not the same size, then A == B is an error.

EXPERIMENT-FOUR: FLOW CONTROL

 (4-3)

The proper way to check for equality between two variables is to use the isequal function,

if isequal(A,B), ...

Several functions are helpful for reducing the results of matrix comparisons to scalar

conditions for use with if, including

Isequal True if arrays are numerically equal
Isempty True for empty array.
all True if all elements of a vector are nonzero.
any True if any element of a vector is nonzero.

2- if-else statement

 if-else statement keywords provide for the execution of alternate groups of

statements. An end keyword, which matches the if, terminates the last group of statements.

The groups of statements are delineated by the four keywords – no braces or brackets are

involved. The basic form of if-else statement for use in a program file is:

if condition

 statement-1

else

 statement-2

end

or in simplest form :

if condition statement-1, else statement-2,end

Example: the same example above will be repeated using if-else statement:

a = input(’enter the value of a:’);

b = input(’enter the value of b:’);

c = input(’enter the value of c:’);

if (b^2 -4*a*c == 0) & (a ~= 0)

EXPERIMENT-FOUR: FLOW CONTROL

 (4-4)

 disp(‘The quadratic equation has equal roots’)

 x = -b / (2*a)

else

 disp(‘The quadratic equation did not have equal roots’)

end

3- if-elseif statement

 The if-elseif statement executes groups of statements based on different expressions.

So if our comparison contains many statements for many conditions then we must use the

if-elseif statement. The basic form of this statement is:

if condition-1

 statement-1

elseif condition-2

 statement-2

.
.
.
.

elseif condition-N

 statement-N

else

 statement-N+1

end

Example: Suppose the random bank offers 9% interest on balances of less than $5000,

12% for balances of $5000 or more but less than $10000, and 15% for balances of $10000

or more. The following program calculates a customer’s new balance after one year

according to this scheme:

bal = input (‘ Enter bank balance:’);

if bal < 5000

 rate = 0.09;

elseif bal < 10000

EXPERIMENT-FOUR: FLOW CONTROL

 (4-5)

 rate=0.12;

else

 rate = 0.15;

end

newbal = bal + rate * bal;

format bank

disp (‘New balance is:’)

disp (newbal)

4- switch and case statements

 The switch statement executes groups of statements based on the value of a variable

or expression. The keywords case and otherwise delineate the groups. Only the first

matching case is executed. There must always be an end to match the switch. The general

form of a while statement is:

switch variable

 case case_number_1,

 statement-1

 case case_number_2,

 statement-2
 .
 .
 .
 .

 case case_number_N,

 statement-N

 otherwise,

 statement-N+1

 end

So the statements following the case statement are executed when the case number

matches the variable value entry with the switch statement.

EXPERIMENT-FOUR: FLOW CONTROL

 (4-6)

Note: Unlike the C language switch statement, MATLAB’s switch does not fall through. If

the first case statement is true, the other case statements do not execute. So, break

statements are not required.

Example: Write a script file to enter an integer random numbers from 1 to 10 in a (3×3)

matrix (named A). Find the requirements below depending on your entry from 1 to 4:

1. The transpose of matrix A.

2. The determinant of matrix A.

3. The inverse of matrix A.

4. The eigen values of matrix A

A=fix(rand(3,3)*10);

disp('your matrix is:')

A

n=input('Enter your choice from 1 to 4:')

switch n

 case 1

 disp('The transpose of matrix A is:')

 A'

 case 2

 disp('The determinant of matrix a is:')

 det(A)

 case 3

 disp('The inverse of matrix A is:')

 inv(a)

 case 4

 disp('The eigen values of matrix A is:')

 eig(a)

 otherwise

 disp('wrong number, enter another number')
end

