
The C++ Language Tutorial

 54

Line Style and Thickness Names
Here are the names of the line styles and thickness:
Line Style
SOLID_LINE
DOTTED_LINE
CENTER_LINE
DASHED_LINE
USERBIT_LINE

Thickness
NORM_WIDTH
THICK_WIDTH

Line Style Patterns
The names of the line patterns are:
SOLID_LINE = 0
DOTTED_LINE = 1
CENTER_LINE = 2
DASHED_LINE = 3

Filling Patterns

o Selecting Pattern and Color
o Filling Regions
o Getting a Pixel

Selecting Pattern and Color
Use the command SetFillStyle for setting the pattern and color for the object that you wish
to fill.

setfillstyle (pattern, color);

Pattern Names
Here is the name of available patterns:
Values Causing filling with
EMPTY_FILL Background Color
SOLID_FILL Solid Color
LINE_FILL Horizontal Lines
LTSLASH_FILL Thin diagonal lines
SLASH_FILL Thick diagonal lines
BKSLASH_FILL Thick diagonal backslashes
LTBKSLASH_FILL Light backslashes
HATCH_FILL Thin cross hatching
XHATCH_FILL Thick cross hatching
INTERLEAVE_FILL Interleaving lines
WIDE_DOT_FILL Widely spaced dots
CLOSE_DOT_FILL Closely spaced dots

The C++ Language Tutorial

 55

Filling Regions
- After selecting a color and pattern, floodfill is used to fill the desired area.
- floodfill (x, y, border_color);
- This “paints out” the desired color until it reaches border color.
- Note: The border color must be the same color as the color used to draw the shape.
- Also, you can only fill completely “closed” shapes.

Filling “Special” Regions

- To draw a filled ellipse:
fillellipse (xcoordinate, ycoordinate, xradius, yradius);

- To draw a filled rectangle:

bar (x1, y1, x2, y2);

- To draw a filled 3D rectangle:
bar3d(x1, y1, x2, y2, depth, topflag); //depth is width of

the 3D rectangle, if topflag is non-0 a top is added to the bar

- To draw a filled section of a circle:
pieslice (x, y, startangle, endangle, xradius);

Text Output on the Graphics Screen
To write a literal expression on the graphics screen using the location specified by (x, y) use
the command:

outtextxy (x, y, “literal expression”);
outtextxy (x, y, string_variable);

o Note: These are not “apstring” type strings. They are C++ standard Strings.

Text Styles
To set the values for the text characteristics, use:
settextstyle (font, direction, charsize);

Font
DEFAULT_FONT
TRIPLEX_FONT
SMALL_FONT
SANS_SERIF_FONT
GOTHIC_FONT
SCRIPT_FONT
SIMPLEX_FONT
TRIPLEX_SCR_FONT
COMPLEX_FONT
EUROPEAN_FONT
BOLD_FONT

Direction
HORIZ_DIR = Left to right
VERT_DIR = Bottom to top

The C++ Language Tutorial

 56

Text Styles - Font Sizes
CharSize
1 = Default (normal)
2 = Double Size
3 = Triple Size
4 = 4 Times the normal
5 = 5 Times the normal
….
10 = 10 Times the normal

Text Justification
To set the way that text is located around the point specified use the command:

settextjustify (horizontal,vertical);

Horizontal Vertical
LEFT_TEXT TOP_TEXT
CENTER_TEXT BOTTOM_TEXT
RIGHT_TEXT

Clearing the Screen

- Here is the way to clear the graphics screen.
- When in graphics mode use:

cleardevice(); //#include <graphics.h>

Text - Height & Width

- Returns the height, in pixels, of string S if it were to be written on the graphics
screen using the current defaults.

textheight (S string);
- Returns the width, in pixels, of string S if it were to be written on the graphics screen

using the current defaults.
textwidth (S string);

Getting a Pixel
To return the color number corresponding to the color located at the point: X, Y use the
command:

getpixel (x, y);

Useful Non-Graphic Commands

- kbhit()
o checks to see if a keystroke is currently available
o If a keystroke is available, returns a nonzero integer.
o If a keystroke is not available, returns a zero.

- Any available keystrokes can be retrieved with getch().

