Design of Stable Channels CH-4

Riprap-Lined Channels

Providing Channel Protection

- In cases where vegetation is not suitable, riprap is often used to stabilize channels...
 - Riprap = rough, angular rocks of varying size
- Place riprap on surfaces that are well compacted and stable
 - Toe protection for channel bank riprap
- Design of riprap...
 - Select rock size large enough so that the force attempting to overturn the rocks is less than the gravitational force acting on the rocks

Providing Channel Protection

- Gradation of riprap:
 - Select particle size distribution such that voids between the larger particles are filled with smaller particles
 - Suggested gradation by Simons and Senturk (1977, 1992):

Size	% Finer
0.2d ₅₀	0
0.5d ₅₀	20%
d ₅₀	50%
2d ₅₀	100%

Sloping Bed

- Design procedures:
 - Federal Highway Administration (FHA)
 - SCS Procedure
 - CSU Procedure

Sloping Bed - FHA

- FHA:
 - Uses a maximum stable depth of flow given by the following equation (d_{50} and h_{max} in ft, and γ = 62.4 lb/ft³):

$$h_{\max} = 5 \left(\frac{d_{50}}{\gamma S_f} \right)$$

 Velocity of flow given by Manning's equation with n given by...

$$n = 0.0395 (d_{50})^{1/6}$$
$$U = \frac{37.7}{(d_{50})^{1/6}} R_h^{2/3} S_f^{1/2}$$

Example- 4.15

Determine the d_{50} riprap size required to convey 115 cfs down a 10% slope in a rectangular channel 18 ft wide. Riprap is for the bottom and use the FHA procedure. Determine the D_{50} riprap size required to convey 115 cfs and a 10% slope in a rectangular channel 18 ft wide. For ap is for the bottom only. Use the FHA procedure. Solution: Assume $R = d_{max}$, $\gamma = 62.4$, S = 0.10. Then

C T

$$= \frac{5D_{50}}{\gamma S} = 0.801 D_{50}$$

$$= \frac{37.7}{D_{50}^{1/6}} (d_{\text{max}})^{2/3} S^{1/2} = \frac{37.7}{D_{50}^{1/6}} (0.801 D_{50})^{2/3} (0.10)^{1/2}$$

$$= 10.28 D_{50}^{1/2}$$

$$Q = vA = 10.28 D_{50}^{1/2} d_{\text{max}} B = 10.28 D_{50}^{1/2} (0.801 D_{50}) (18)$$

$$115 = 148.22 D_{50}^{3/2}$$

$$D_{50} = 0.84 \text{ ft}$$

Note:

$$l_{\text{max}} = 0.68 \text{ ft}$$

 $R = \frac{db}{2d+b} = \frac{0.68(18)}{2(0.68)+18} = 0.63 \text{ ft.}$

Therefore, the assumption that R = d is reasonable. If the Abt relationship for *n* is used, the result is v = 8.4 fps and $D_{50} = 0.95$ ft.

Sloping Bed - SCS

- SCS:
 - Also uses a maximum stable depth of flow
 - Equation (d_{75} and h_{max} in ft): $d_{75} = 13.5h_{max}S_f$

$$d_{75} = 1.5d_{50}$$

 $h_{\text{max}} = \left(\frac{d_{50}}{9S_f}\right)^{0.9}$

 Velocity of flow given by Manning's equation with n given by...

$$U = 12.84 d_{50}^{-0.51}$$

Example – 4.16

Determine the d_{50} riprap size required to convey 115 cfs down a 10% slope in a rectangular channel 18 ft wide. Riprap is for the bottom and use the SCS procedure. Work Example Problem 4.15 using the SCS approximations.

Solution

$$Q = vA = 12.84D_{50}^{0.51}(dB) = 12.84D_{50}^{0.51}\left(\frac{D_{50}}{9S}\right)^{0.91}$$

$$115 = 254D_{50}^{1.42}$$

$$D_{50} = 0.57 \text{ ft}$$

$$U_{\text{max}} = \left(\frac{0.57}{9(0.1)}\right)^{0.91} = 0.66 \text{ ft}.$$

For this problem, the FHA and SCS criteria result in similar designs with the FHA procedure resulting in larger estimates for the required D_{50} . This will generally be the case.

Sloping Bed - CSU

- CSU Procedure (Simons and Senturk, 1977, 1992):
 - Safety Factor (SF) concept
 - SF = ratio of resisting forces (moments) to driving forces (moments)
 - SF = 1 (Point of incipient motion)
 - Recommend SF > 1.5 to account for variability in particle sizes

Sloping Bed - CSU

- CSU Procedure (Simons and Senturk, 1977, 1992):
 - Consider forces acting on a channel bed sloped at an angle θ :

Figure 4.16 Forces on a particle in a channel bed. F_d , drag force; F_L , lift force; *PR*, point of rotation.

Sloping Bed - CSU

 CSU Procedure (Simons and Senturk, 1977, 1992):

$$SF_{b} = \frac{\cos(\theta)\tan(\varphi)}{\sin(\theta) + \eta_{b}\tan(\varphi)}$$
$$\eta_{b} = \frac{21\tau_{o}}{\gamma(s_{s} - 1)d_{50}}$$

Example – 4.17

Determine the d_{50} riprap size required to convey 115 cfs down a 10% slope in a rectangular channel 18 ft wide. Riprap is for the bottom (neglect stability problems associated with the side slopes). Assume a specific gravity of sediment of 2.65 with φ = 42°. Design for a safety factor of 1.5. Solution: The solution procedure involves a trial and error approach of selecting a riprap size, calculating the depth of flow required to convey the flow, and checking the safety factor to ensure that the channel is stable. Assume a D_{50} of 2.5 ft, from Eq. (4.32).

$$n = 0.0395 D_{50}^{1/6} = 0.046.$$

From Manning's equation, assuming a wide channel,

$$Q = Av = bd \frac{1.49}{n} d^{2/3} S^{1/2}$$
$$d = \left[\frac{nQ}{1.49bS^{1/2}}\right]^{3/5} = \left[\frac{0.046(115)}{1.49(18)(0.10)^{1/2}}\right]^{3/5}$$

d = 0.75 ft depth required to convey the flow. Checking for stability using Eqs. (4.44) and (4.39),

$$\tau = \gamma dS = (62.4)(0.75)(0.10) = 4.68 \text{ lb/ft}^2$$

$$\eta_b = \frac{21\tau}{\gamma(\text{SG} - 1)D_{50}} = \frac{21(4.68)}{62.4(2.65 - 1)2.5} = 0.382.$$

Assuming an angular riprap, Fig. 4.17 gives $\phi = 42^{\circ}$. For a 10% slope, $\theta = 5.71^{\circ}$. Hence, from Eq. (4.39),

 $SF_b = \frac{\cos\theta \tan\phi}{\sin\theta + \eta_b \tan\phi} = \frac{(\cos 5.71)(\tan 42)}{\sin 5.71 + 0.382 \tan 42}$ $SF_b = 2.02 \quad \text{over designed.}$

Calculations to select a better design are contained in Table 4.12. Use a riprap with a D_{50} of 1.7 ft on the channel bed. Obviously, there is a problem with stability of the side slopes. Also the gradation of riprap must be specified and a filter blanket selected. This is covered in subsequent sections and examples.

Channel Bank Stability

- CSU Procedure Stevens and Simons (1971) and Simons and Senturk (1977, 1992):
 - Difference from bed is that drag forces are not aligned with the down slope gravitational forces
 - Equations assume that the ratio of lift to drag forces is 0.5

Channel Bank Stability $SF_b = \frac{\cos(\alpha)\tan(\varphi)}{\sin(\alpha)\cos(\beta) + n'\tan(\omega)}$ $\beta = \tan^{-1} \left(\frac{\cos(\theta)}{\frac{2\sin(\alpha)}{n\tan(\phi)} + \sin(\theta)} \right)$ $\eta = \frac{21\tau_o}{\gamma(s_s - 1)d_{so}}$ $\eta' = \eta \frac{1 + \sin(\theta + \beta)}{2}$

Example – 4.19

Determine the d₅₀ riprap size that will be stable on the bed and channel side slopes with m = 2.5 in a trapezoidal channel (18 ft bottom width). The channel needs to convey 115 cfs down a 10% slope. Assume a specific gravity of sediment of 2.65 with $\varphi = 42^{\circ}$. Design for a safety factor of 1.5. *Solution:* First the safety factor of the riprap selected in Example Problem 4.17 is calculated assuming the same material is used on the sides. From Example Problem 4.17,

 $D_{50} = 1.7 \text{ ft};$ n = 0.043; $\theta = 5.71^{\circ};$ d = 0.722 ft.

For a trapezoidal channel, the flow depth can be calculated to be 0.72 ft, which is insignificantly smaller than 0.722 ft for the rectangular channel in Example 4.17; hence we use 0.722 ft.

From Fig. 4.8 τ_{max} is given by 0.76 γ dS:

$$r_{\max} = (0.76)(62.4)(0.722)(0.10) = 3.41 \text{ lb/ft}^2$$
$$\eta = \frac{21\tau_{\max}}{\gamma(\text{SG} - 1)D_{50}} = \frac{21(3.41)}{62.4(2.65 - 1)1.7} = 0.408.$$

Assuming uniform flow, the streamlines are parallel to the channel bottom and

$$\lambda = \theta = 5.71^{\circ}.$$

Also, for a 2.5 : 1 sideslope,

$$\alpha = \tan^{-1} \frac{1}{2.5} = 21.8^{\circ}$$