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Linear Wire Antennas — Dipoles and Monopoles

The dipole and the monopole are arguably the two most widely used
antennas across the UHF, VHF and lower-microwave bands. Arrays of dipoles
are commonly used as base-station antennas in land-mobile systems. The
monopole and its variations are perhaps the most common antennas for portable
equipment, such as cellular telephones, cordless telephones, automobiles, trains,
etc. It has attractive features such as simple construction, sufficiently broadband
characteristics for voice communication, small dimensions at high frequencies.
An alternative to the monopole antenna for hand-held units is the loop antenna,
the microstrip patch antenna, the spiral antennas, Inverted-L and Inverted-F

antennas, and others.
9.1 Small dipole
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the condition for small dipole is 0 <l < 10

If we assume that R = r and the above condition holds, the maximum phase
error in (Rp) that can occur is

ﬂl_n_ .
2_10_18

At 6 =0, A maximum total phase error of 7 /8 is acceptable since it does not

emax -

affect substantially the integral solution for the vector potential A. The assumption
R = r is made here for both, the amplitude and the phase factors in the kernel of
the VP integral.
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The current is a triangular function of 'z:

/2
I(z")= B
;,,,-[1+ - ] ~1/2<2'<0
1/2
The VP integral IS obtained as
1/2
e ],BR Z, e_]BR
1 — dz' |1 ——= dz'|a
4n +l/2> R Z+J ’”( l/2> R A%
—l/2 0
1 ‘u _jBR
A==-|—I, a
2[4n 1 r |

The further away from the antenna the observation point is, the more
accurate the expression in above equation. Note that the result in it is exactly one-
half of the result obtained for A of an infinitesimal dipole of the same length, if I,
were the current uniformly distributed along the dipole. This is expected because
we made the same approximation for R, as in the case of the infinitesimal dipole
with a constant current distribution, and we integrated a triangular function along
I, whose average is obviously lo=l5, = 0.5 Ip,.

Therefore, we need not repeat all the calculations of the field components,
power and antenna parameters. We make use of our knowledge of the
infinitesimal dipole field. The far-field components of the small dipole are simply

half those of the infinitesimal dipole:

B (Iml)e_jﬂr

H, = j - sin 6
I,De IFT
Eg zjnﬁ( m87)tr sin@, pr > 1.

E,=H.=Hy=E, =0
The normalized field pattern is the same as that of the infinitesimal dipole:
E(8,9) = sinf
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The power pattern:

1 0.5 0 0.5 1

The beam solid angle:

2T T 2T T

— 8m
QAzﬂ U(H,(p)sin9d9d<p=jj sin29-sin9d9dq)=?
00 00

The directivity:
Doy =41/ Qy=3-4n/8n=3/2=1.5
As expected, the directivity, the beam solid angle as well as the effective
aperture are the same as those of the infinitesimal dipole because the normalized

patterns of both dipoles are the same.
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The radiated power is four times less than that of an infinitesimal dipole of

the same length and current lo=I, because the far fields are twice smaller in

H_lln Imlz_n I,1\°
“2 3N\ ) T2\

As a result, the radiation resistance is also four times smaller than that of the

magnitude:

infinitesimal dipole:

m=l.r2r =g =y 2—20 (L)
-3 = =) =)
9.2 Finite-length infinitesimally thin dipole

} Fir, 8,9)

FPir. 8,¢)

-

A~ |
— | e= ¢.---"' — - |
~

(b} Geometrical arrangement for far-field approximations

Figure 9.1 Finite dipole geometry and far-field approximations
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A good approximation of the current distribution along the dipole’s length is

the sinusoidal one:

1(z') =

It can be shown that the VP integral

‘u l/z e_jBR
A=(’1‘2E jl(z’) 7 dz'
-1/2

has an analytical (closed form) solution. Here, however, we follow a standard
approach used to calculate the far field for an arbitrary wire antenna. It is based
on the solution for the field of the infinitesimal dipole. The finite-length dipole is
subdivided into an infinite number of infinitesimal dipoles of length dz'. Each such
dipole produces the elementary far field as
o—JBR
4R
o—JBR
dEg ~ jnp - 1(z') 5 —

dE, = dH, = dHy = dE, = 0

sin 8 dz’

dH, = jB - 1(z")

sinf@ dz’

where R=[x? + y2 + (z- 2')?]¥?and | (z ') denotes the value of the current element
at 'z. Using the far-zone approximations,
%: l for the amplitude factor
p
R=r—z'cosf, for the phase factor

the following approximation of the elementary far field is obtained:

e~ JBT |
dEg ~ jnp - 1(z') —— - @Bz 050 . 5ing dz’
Using the superposition principle, the total far field is obtained as
/2 i /2 o
Eg = j dEg =~ jnp - yo— .sin @ j (") - e/F?' cosb . g5
-l/2 -i/2
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The first factor
e_jﬁr
0) = jnpI, -
g(8) = jnpl, =

is called the element factor. The element factor in this case is the far field

-sin @

produced by an infinitesimal dipole of unit current element I.I= 1 (Axm). The
element factor is the same for any current element, provided the angle 4 is always
associated with the current axis.

The second factor is the space factor (or pattern factor, array factor). The
pattern factor is dependent on the amplitude and phase distribution of the current
at the antenna.

For the specific current distribution described in the begging of this section,

the pattern factor is

0 /2
[ ., l -/
f(6) = f sin [B (E + z’)] - elBzcosb . gz 4 f sin [,8 (E - z’)] - gJBz cost . gt
-1/2 0

The far field of the finite-length dipole is obtained as

. Bl Bl
—jBr |cos|H-cosB ) —cos|H
Eg = 9(0) - F(0) = nly-5— (Feox0)=eon(5)

sin @

In a similar manner, or by using the established relationship between the Ey

and H, in the far field, the total H, component can be written as

e—JBr |cos (% cos 9) — cos (%)

27T sin @

H(p = jlp-
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The normalized field pattern:

cos (% cos 9) — cos (%)

E(QJ (p) = Sin 9
The power pattern:
U(0.9)= ”_?J’ |EP
2
cosS (% cos 6) — COoS (%) [cos <% cos 9) — COS (’32 )]
U, ) = =
’ sin 0 sinZ 6

Note: The maximum of U (8, ¢) is not necessarily unity, but for | < 2\ the major

maximum is always at 6 =90°.

The radiated power:
First, the far-zone power flux density is calculated as

12 Ccos (% cos 9) — Cos (g ) A

— . . - a
r =1 8m2r2 sin @ T

— 1 IE IZ’\
_277 glea

The total radiated power is given by the integral

2T TT

H=#P-ds= ff P-r%sinf dfde.
00

anm 12 cos (% cos 9) cos ([;l)
v 22 Qi
]f n- 82 r2 r“sin 8 dOde.

sin 8

- Ig J” [cos 5 cos 9) — cos (%)]2 o
0

47r sin @

L
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Thus, the radiated power can be written as

I1 = Ig L
=1 41
The radiation resistance is defined as
1 21
n=§-I$nRr=>Rr =T

m

I

.20, 2
o M agt_n Io
" I 2m 2

where I, is the maximum current magnitude along the dipole. If the dipole is half-
wavelength long or longer (I > A/2), In=lo. However, if | <A/2, then I,<l,. This
can be easily understood from the current distribution equation. If | <A/2 holds,
the maximum current is at the center (the feed point z’=0) and its value is

Ly = I (z7=0y = Ip sin(Bl/2)
where f1/2 < /2, and, therefore sin(fl/2) < 1. Therefore,

R . £
T 21 sin%(Bl/2)

s
Ry=n-L, if122/2

L ifl<A/2

The directivity is obtained as

Umax

Doy = 41 n

2T TT

D, = 41 / f U (6, ®) sin 6 dode
00

2U
Drax = wa
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Input resistance:

The radiation resistance given above is not necessarily equal to the input
resistance because the current at the dipole center Ii, (if its center is the feed point)
IS not necessarily equal to I,. In particular, liy # Iy if | >A/2 and | # (2n +1) A /2.
Note that in this case I, = lo. If the dipole is lossless, the input power is equal to

the radiated power. Therefore,
1 1
E-I?,,Rm =1 =§-13Rr 1>)\/2

Since the current at the center of the dipole (z'=0) is

Py =

Iy = 1z1=0y = Iy sin(Bl/2)

then
R, n
Rpn=—F—"—"=5-"—5—"—, | >A/2.
sin®(Bl/2) 2T sin*(Bl/2)
For a short dipole (1 < A/2), I;;, = I,,,and therefore;
Ry, =R, n._ £ L<A/2.

T 27 sin?(Bl/2)
In summary, the dipole input resistance, regardless of its length, depends on the

integral £ as in above equations, as long as it is fed at its center.
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