DSP 1 By Asst., Prof. Maha George
Lec. 9 — Part 2
9.6 Finite Impulse Response (FIR) filter

In many cases a linear phase c/cs is required throughout the pass-band of the filter to

preserve the shape of a given signal within the pass-band. Assume a LP filter with:

g Ve W[<w,
H(e!") =40 W, <W|<z (9.32)
periodic for all other W
YY) =X@") HEY ) =X@Y ). e TV (9.33 a)
Y(2)=X(Z).Z" " (9.33 b)
ym)=xn-o) (9.34)

The linear phase filter did not alter the shape of the original signal, simply translated it by an

amount a, as shown in Fig. (9.9)

Fig.(9.9) The effect of (a) linear phase and (b) nonlinear phase c¢/cs on steady state outputs

with identical magnitude frequency response curves

A causal IIR filter can not produce a linear phase c/cs and that only special forms of FIR filters
can give linear phase.
The necessary conditions for linear phase:

1. h(n) have finite duration ( for causal FIR filter, h(n) begins at zero and ends at N-1)
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h(n) = h( N-1-n) ,n=0,1,....,N-1 (9.35)
2. Symmetric about its mid-point ( see Fig. (9.10) )

Jr h(n) A exi ,r (n) .
"ran” hThzTT== mrl[ jh 'l .8
0 'Y_Fffii%l N+1 N 5 I Y?I\;; Nf[ i

Fig. (9.10) General shapes of h(n) that give linear phase for odd and even N.

If h(n) is as given in the above conditions, we now show that H(¢'™ ) has linear phase. For N

cven:
) © ) N-1 )
HEe™)=>hme™ =>hme ™  (Finite duration) (9.36)
N=—0 n=0
(N/2)-1
He")= Y hme " + Zh(n)e we—H @e")+H,e") (9.37)
n=0 n=N/2
Let m=N-1-n
(= )1
H,e")= Zh(N —1-m) e W = Zh(m)e SN 9.38)
m=(2)—1
G G- |
~HE™) =D hme M+ > h(m) e M (9.39)
n=0 m=0
( -1 N-1 . N-1
- (—) SIW-=0) S JWN-n——=2)
HEe'")= Zh() { 2 +e ? } (9.40)
(- )1 N—1
wd N-1
HEe")= Zzh(n)e 2 {COS[W(H——)]} (9.41)
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For N even:
Ny

iw (*) % N-1

HE")=e 2, 2h) (cos [W (1—-)] ©0.42)
Linear phase magnitude

For N odd:

) Zj (7) N—] ™22
He'")=e {h(—)+ Z 2h(n) {COS[W(H——)]} (9.43)

For N odd, the slope of — a = — (N—1) /2 causes a delay in the output of (N—1)/2 , which is an
integer number of samples, whereas for N even, the slope causes a non-integer delay. The non-
integer delay will cause the values of the sequence to be changed, which, in some cases, may be

undesirable.

9.7 Design of FIR filters using Windows

If hg(n) represents the impulse response of a desired IIR filter, then an FIR filter with

impulse response h(n) can be obtained as follows:

h(n)=h,(n).w(n)
hy(n) N, <n<N,
h(n) = { : }

otherwise

1 N, <n<N _ : 9.44
w(n) = : - , window function ©44)
0 otherwise
H(eiW)zzi de (e’)YWE!™ ?)ydo=H, (e!)®W(e'’)
7[ -7
A Hy(eiw) W(e/*) Hie)
%k
— —wy wy oW - ™ Wy ""ﬂ‘ '
.'h?

Fig. (9.11) Frequency response obtained by rectangularly windowing ideal LP impulse

response.
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As shown in Fig.(9.11), the convolution produces a smeared version of ideal LP frequency
response Hg( ejw). In general, the wider the main lobe of W( ejw), the more spreading, whereas
the narrower the main lobe ( larger N), the closer | H( ejw) | comes to | Hq( ejW) | .

Some of the most commonly used windows are:

1. Rectangular:

womy={ L  0SnsN-I (9.45)
R 10 otherwise '
2. Bartlett:
2n 0<n<(N-1)/2
(N-1
2-2n
W, (n) = N-1/2<n<(N-1 9.46
g(N) (N_1D) ( ) ( ) (9.46)
0 elsewhere
3. Hanning:
2xn
0.5 [1—cos( )1, 0<n<N-1
Wion(M) = (N-1) (9.47)
0 elsewhere
4. Hamming:
0.54—046c0s (=) | 0<n<N-I
Wi () = (N-1) (9.48)
0 elsewhere
5. Blackman:
042-05 cos (2F" 14008 cos (-F" ), 0<n<N-I
W () = (N-1) (N-1) (9.49)
0 elsewhere

An ideal LP filter with linear phase of slope —a and cutoff w, can be characterized in frequency

domain by:

H,(e")= e W< (9.50)
0 W, <MW <7 '

Using inverse F.T ( eq. (4.11), PP. 28 ):

(= S LW (1-@)] .51

r(n—a)
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For a causal FIR filter, and using :
h(n)=h,(n).w(n) (9.52)
Substituting eq.(9.51) into eq.(9.52), yield:

sin[w, (N—a) ]

- .w(n) (9.53)

h(n) =

For h(n) to be a linear phase filter, a = (N-1) / 2.
Table (3) shows hg(n) for LPF, HPF, BPF, and BSF:

Table (3) hg(n) and hg(a ) for LPF, HPF, BPF, and BS

Filter Type hg(n) hg(a)
in[w, (n—
LPF hy (n) = sm[ﬁ(;(_a)a)] ha(e) = we/ 7
in[ W, (n—
HPF NURSES (°n(_a)“)] ha(o) = 1 (we/ )
N, = 27k ’ N, = 27k
W, =W, W, =W,
BPF N=max (N, Ny ) hg(a)=(wy -w) /@
h, () = sin{w,(N—a)} —sin{w, (n—a)}
‘ T(N—a)
N, = 27k ’ N, = 27k
W, =W, W, =W,
BSF N=max (N, Ny ) hg(a)=(m—wy —w|) /=
h, () = sin{w,(n—a)} —sin{w, (N—a)}
‘ T(N—a)

In general, for all the above filters with N odd:

h(n)=h,(n).w(n)

He™) —e {h(M) (Ni/zz h(n) {cos [W (n——) ] }

O(W)=—Wa, witha=(N—-1)/2
Notes:

e The stop-band gain for the LPF designed is relatively insensitive to the size of the

window and the selection of w, depending mainly on the type of window.
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The transition width of the designed LPF is approximately equal to the main lobe of the
window used. See Table (4)

Table (4) Design table for FIR LPF

Window Transition Width (w,) | Minimum stop-band attenuation
Rectangular 4n/N —21dB
Bartlett 8n/N —-25dB
Hanning 8n/N —44 dB
Hamming 8n/N —53dB
Blackman 127n/N — 74 dB

9.8 Design procedure for an FIR filter

Requirements: ki, wj, kp, and w; represents the cutoff and stop-band requirements for digital

filters.

—

. From Table (4), select the window type such that the stop-band gain exceeds k»
Selects the number of points in the window,
wi=wr—w;= k(2n/N),
N>kQ2mn)/(wy—wyp), N is preferred odd
. Select a and w. , where :
we =wp, anda=(N—-1)/2
. Find h(n) from eq. (9.52) using the specified window type and Table (3) .
. Use eq. (9.42) or €q.(9.43 ) to plot the frequency response H(ejw), and check to see if the
given specifications are satisfied.
. If the attenuation requirement at w is not satisfied, increase w, and return to step 4, and 5 .
. If the frequency response requirements are satisfied, check to see if a further reduction of
N might be possible. If a further reduction in N is not possible, then h(n) found is the
desired design, otherwise, reduce N and return to step 3.
. If the filter is to be used in A/D- H(Z) — D/A structure, the equivalent analog specifications
must be converted to digital specifications. For analog critical frequencies, Q; , the
corresponding digital specifications using a sampling rate of 1 / T samples /sec. ;

WiZQiT
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Example (9): Design a LP digital filter to be used in A/D- F(Z) — D/A structure that will have a
— 3 dB cutoff of 30 © rad / sec. and an attenuation of 50 dB at 45 & rad/sec. The filter is required
to have linear phase. The system will use a sampling rate of 100 samples/sec.
Solution:
we =w;=Q, T=30n(1/100) = 0.3 w rad
wy =w,; =Q, T=457n(1/100) = 0.45 t rad
1. Hamming window is chosen.
2. From step (2):
@n/N)=k@2n/N), Thenk=4
N>4Q2mn)/(045-0.3)n=53.3=55
3. we=wy=03nrad , anda=(N-1)/2=27
4. Using eq. (9.48) for wyam and the value of hg(n) from Table (3) to find h(n):

sin[ 0.37 (n—27) ]

.{0.54 - 046 cos(2zn/54)},0<n<54
7 (n=27)

h(n) =

HEe")=e Ve (h27) +ZZ6:2 h(n) {cos [W (n-27)1}

From the results obtained from MATLAB program, the attenuation is seen to be too much at w,
=w) . The design is improved by making w. =0.33 rad / sec, then N =29, o =14 and

sin[ 0.33 7 (n—14) ]

.{0.54 - 0.46 cos(2zn/28)},0<n<28
z(n—-14)

h(n) =

HEe™)=e " (h(14) +i2 h(n) {cos [W (n-14)1}
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N=155, w, =w, =0.3 trad N=29, w. =w, =0.33 trad
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